Grassmannians and Cluster Algebras

Federico Galetto

December 16, 2009

Grassmannians and Cluster Algebras

The coordinate ring of the Grassmannian $G(2, n+3)$ is the Ptolemy algebra \mathcal{A}_{n}.
Clusters in \mathcal{A}_{n} are parametrized by triangulations of a regular $(n+3)$-gon \mathbb{P}. In particular,

- frozen variables correspond to the sides of \mathbb{P};
- cluster variables correspond to the diagonals in a given triangulation of \mathbb{P};
- mutations are given by diagonal flips;
- exchange relations are given by the short Plücker relations.

In "Grassmannians and Cluster Algebras", J. Scott proved the coordinate ring of any Grassmannian $G(k, n)$ is a cluster algebra.

Contructing a π-diagram

- In S_{7}, consider the permutation

$$
\pi=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 5 & 6 & 7 & 1 & 2 & 3
\end{array}\right)
$$

- Take a convex polygon with 14 vertices and label them $1^{\prime}, 1,2^{\prime}, 2, \ldots, 7^{\prime}, 7$ clockwise.
- For i from 1 to 7 , draw a path in the interior of the polygon joining i to $\pi(i)^{\prime}$ and oriented towards $\pi(i)^{\prime}$.

Compatibility relations

(1) No path intersects itself.
(2) All path intersections are transversal.
(3) As a path is traversed from source to target, the paths intersecting it must alternate in orientation cutting it first right, then left, right, ..., finally left.
(4) For any two paths i and j, the following configuration is forbidden

Postnikov arrangements

Definition

Let $\pi \in S_{n}$. Label the vertices of a convex $2 n$-gon clockwise by the indices $1^{\prime}, 1,2^{\prime}, 2, \ldots, n^{\prime}, n$. A Postnikov arrangement for π (or a π-diagram) is a collection of n oriented paths in the interior of the polygon; the i-th path joins the vertex i with the vertex $\pi(i)^{\prime}$ and is directed towards $\pi(i)^{\prime}$. The collection of paths must satisfy the compatibility relations $1-4$.

Postnikov arrangements are identified up to:

- isotopy, i.e. distortions of the configuration that neither introduce nor remove crossings;
- untwisting conescutive crossings of two paths

Labels in a π-diagram

A region in a π-diagram is called:

- odd, if its boundary is oriented (either clockwise or counterclockwise);
- even, if its boundary paths alternate in orientation, i.e. if the boundary of the region changes orientation at every intersection with another path.
The boundary of the $2 n$-gon is oriented clockwise.

Label an even region with the index i if the circuit obtained traversing the i-th wire and then the boundary of the polygon clockwise from $\pi(i)^{\prime}$ to i does not wind around the region.

The Grassmann permutation

Let k, n be integers with $0<k<n$. We call

$$
\pi_{k, n}=\left(\begin{array}{cccccc}
1 & \ldots & n-k & n-k+1 & \ldots & n \\
k+1 & \ldots & n & 1 & \ldots & k
\end{array}\right)
$$

the Grassmann permutation.

Proposition (Postnikov)

Let $\pi_{k, n}$ be the Grassmann permutation.
(1) The number of even regions in a $\pi_{k, n}$-diagram is $k(n-k)+1$.
(2) Each even region is labeled by exactly k indices from $[1 \ldots n]$.
(3) The k-subsets labeling boundary cells are always the intervals

$$
[1 \ldots k],[2 \ldots k+1],[3 \ldots k+2], \ldots, \quad[n \ldots k-1] .
$$

(9) Every k-subset in $[1 \ldots n]$ occurs as the labeling set of an even cell in some $\pi_{k, n}$-diagram.

Example: a $\pi_{3,7}$-diagram

- The permutation

$$
\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 5 & 6 & 7 & 1 & 2 & 3
\end{array}\right)
$$

is the Grassmann permutation $\pi_{3,7}$

- There are 13 even cells.
- Each even cell is labeled by three distinct indices from [1...7].
- There are 7 boundary cells labeled by intervals in [1...7].

Geometric exchange

Given a π-diagram A and an even quadrilateral cell inside $\mathbf{A},(|I|=k-2$ and i, j, s, t are distinct indices disjoint from I)

a new π-diagram is constructed by the above local rearrangement, called a geometric exchange.
The geometric exchange is an involution, provided we untwist consecutive crossings after performing the exchange.

Proposition (Postnikov)

Let \mathbf{A} and \mathbf{A}^{\prime} be two $\pi_{k, n}$-diagrams. Then there is a sequence of geometric exchanges transforming \mathbf{A} into \mathbf{A}^{\prime}.

Quadrilateral Postnikov Arrangements

For positive integers k and n with $n \geqslant k+2 \geqslant 4$ there exists a $\pi_{k, n}$-diagram, denoted as $\mathbf{A}_{k, n}$, whose internal even cells are all quadrilateral.

These arrangements are necessary for the proof of the main result.

The matrix of a $\pi_{k, n}$-diagram

Two even regions of a Postnikov arrangement, with labels I and J, are said to be neighbors if locally they are situated as follows

I is said to be oriented towards J and J is said to be oriented away from I. Given a $\pi_{k, n}$-diagram \mathbf{A}, let $\tilde{\mathbf{B}}(\mathbf{A})$ be the integer matrix with rows indexed by the k-subset labels of \mathbf{A}, columns indexed by the interior k-subset labels of \mathbf{A} and entries

$$
b_{I, J}=\left\{\begin{aligned}
1, & \text { if } I \text { is oriented towards } J \\
-1, & \text { if } I \text { is oriented away from } J \\
0, & \text { otherwise }
\end{aligned}\right.
$$

The principal submatrix $\mathbf{B}(\mathbf{A})$ is clearly skew-symmetric.

Example: $\tilde{\mathbf{B}}\left(\mathbf{A}_{3,6}\right)$

136
236
346
356
123
234
345
456
156
126 $\left[\begin{array}{cccc}136 & 236 & 346 & 356 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ \hline 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]$

The cluster algebra $\mathcal{A}_{k, n}$

Let \mathcal{F} be the field of rational functions generated by the indeterminates [K] for k-subset labels K arising in the quadrilateral Postnikov arrangement $\mathbf{A}_{k, n}$.

Let $\mathcal{A}_{k, n}$ denote the cluster algebra generated inside \mathcal{F} by the initial seed $\left(\mathbf{x}\left(\mathbf{A}_{k, n}\right), \tilde{\mathbf{B}}\left(\mathbf{A}_{k, n}\right)\right)$, where

$$
\mathbf{x}\left(\mathbf{A}_{k, n}\right)=\left\{[K] \mid K \text { interior } k \text {-subset label in } \mathbf{A}_{k, n}\right\}
$$

and $\tilde{\mathbf{B}}\left(\mathbf{A}_{k, n}\right)$ is the matrix defined earlier.
If K_{1}, \ldots, K_{n} are the boundary k-subset labels in $\mathbf{A}_{k, n}$, then $\mathcal{A}_{k, n}$ is an algebra over the ring $\mathbb{C}\left[\left[K_{1}\right], \ldots,\left[K_{n}\right]\right]$.

Exchange relations in $\mathcal{A}_{k, n}$

Let $|I|=k-2$ and i, j, s, t are distinct indices disjoint from I.

Theorem (Scott)

Each $\pi_{k, n}$-diagram \mathbf{A} gives rise to a seed $(\mathbf{x}(\mathbf{A}), \tilde{\mathbf{B}}(\mathbf{A}))$ in $\mathcal{A}_{k, n}$ whose cluster variables are indexed by the interior k-subset labels of \mathbf{A} and with the property that if \mathbf{A}^{\prime} is obtained from \mathbf{A} by a single geometric exchange through a quadrilateral cell labeled K in \mathbf{A}, then $\mu_{K}(\tilde{\mathbf{B}}(\mathbf{A}))=\tilde{\mathbf{B}}\left(\mathbf{A}^{\prime}\right)$.

The exchange relation corresponding to the geometric exchange above is

$$
[I s t][I i j]=[I i t][I j s]+[I j t][I i s] .
$$

$\mathcal{A}_{k, n}$ and $\mathbb{C}[G(k, n)]$

Every k-subset K of $[1 \ldots n]$ identifies a Plücker coordinate Δ^{K} in $\mathbb{C}[G(k, n)]$.

In particular, identifying $\left[K_{1}\right], \ldots,\left[K_{n}\right]$ with the Plücker coordinates $\Delta^{K_{1}}, \ldots, \Delta^{K_{n}}$, we deduce that $\mathbb{C}[G(k, n)]$ has a natural structure of algebra over $\mathbb{C}\left[\left[K_{1}\right], \ldots,\left[K_{n}\right]\right]$.

Theorem (Scott)

There is an isomorphism $\mathcal{A}_{k, n} \rightarrow \mathbb{C}[G(k, n)]$ of $\mathbb{C}\left[\left[K_{1}\right], \ldots,\left[K_{n}\right]\right]$-algebras sending $[K]$ to Δ^{K} for every k-subset K of $[1 \ldots n]$.

The proof is based on the 'geometric realization criterion' proved by Fomin and Zelevinsky in "Cluster Algebra II".

Grassmannians of finite type

Let $n \geqslant 3$. $\mathbb{C}[G(2, n)]$ is a cluster algebra of finite type: it has finitely many seeds, corresponding to triangulations of a regular n-gon.
The cluster variables are the Plücker coordinates $\Delta^{i j}$ for $1 \leqslant i<j \leqslant n$.
The Plücker coordinates are cluster variables in the coordinate ring of $G(k, n)$. However, in general, there will be more cluster variables than Plücker coordinates.

Theorem (Scott)

$G(3,6), G(3,7)$ and $G(3,8)$ are the only Grassmannians $G(k, n)$, within the range $2<k \leqslant \frac{n}{2}$, whose coordinate rings are cluster algebras of finite type.

To determine finiteness, we analyze the graph $\Gamma\left(\mathbf{B}\left(\mathbf{A}_{k, n}\right)\right)$, where $\mathbf{A}_{k, n}$ is the quadrilateral $\pi_{k, n}$-diagram associated to the initial seed of $\mathcal{A}_{k, n}$.

The infinite case

Let $(k, n) \neq(3,6),(3,7),(3,8)$. Then $\Gamma\left(\mathbf{B}\left(\mathbf{A}_{k, n}\right)\right)$ contains, as an induced subgraph, one of the following:

These two subgraphs contain, as induced subgraphs, a copy of the extended Dynkin diagram $D_{6}^{(1)}$.

$\mathbb{C}[G(3,6)]$

The graph $\Gamma\left(\mathbf{B}\left(\mathbf{A}_{3,6}\right)\right)$ is

By performing a sequence of mutations at $4,2,4,1$, we obtain

which is the Dynkin diagram D_{4}.

$\mathbb{C}[G(3,7)]$

The graph $\Gamma\left(\mathbf{B}\left(\mathbf{A}_{3,7}\right)\right)$ is

Through the sequence of mutations at the vertices $2,4,3,5,6,5$, 1 , we obtain

which is the Dynkin diagram E_{6}.

$\mathbb{C}[G(3,8)]$

The graph $\Gamma\left(\mathbf{B}\left(\mathbf{A}_{3,8}\right)\right)$ is

Mutating at the nodes $1,3,7,6,5,2,4,3,8,7,6$, we obtain

which is the Dynkin diagram E_{8}.

Projective plane geometry and cluster variables

Since $\mathbb{C}[G(3, n)]$, for $n=6,7,8$, is a cluster algebra of finite type, we would like to describe all its cluster variables. We already know some of them are the Plücker coordinates.

As an element of $\mathbb{C}[G(3, n)]$, a cluster variable is a regular function on $G(3, n)$, so we can describe its vanishing locus.
A point in $G(3, n)$ is a 3 -dimensional vector subspace of \mathbb{C}^{n}. As such, it is identified by a $3 \times n$ matrix over \mathbb{C}. The columns of this matrix define n vectors $v_{1}, \ldots, v_{n} \in \mathbb{C}^{3}$.
If we restrict ourselves to the open subset of $G(3, n)$ where none of the v_{i} vanish, then we get a configuration of n points $\left[v_{1}\right], \ldots,\left[v_{n}\right] \in \mathbb{C P}^{2}$.
With this setup, the Plücker coordinate $\Delta^{i j k}$ vanishes on those points of $G(3, n)$ for which $\left[v_{i}\right],\left[v_{j}\right]$ and $\left[v_{k}\right]$ in the associated configuration are colinear.

Cluster variables in $\mathbb{C}[G(3,6)]$

Theorem (Scott)
$\mathbb{C}[G(3,6)]$ possesses 16 cluster variables:

- 14 Plücker coordinates $\Delta^{i j k}$, with $\{i, j, k\}$ an internal 3 -subset of [1...6];
- X^{123456} a quadratic regular function which vanishes on configurations of points of the type:

- $Y^{123456}\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)=X^{123456}\left(v_{6}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$, another quadratic regular function having the same type of vanishing locus as X^{123456} but with the indices cyclically shifted.

Cluster variables in $\mathbb{C}[G(3,7)]$

Assume $n>6$ and $I \subset[1 \ldots n]$ with $|[1 \ldots n]-I|=6$.
Let $I: G(3, n) \rightarrow G(3,6)$ be the projection that takes the $3 \times n$ matrix representing a point in $G(3, n)$ and drops the columns indexed by I.
For $I=\{i\} \subset[1 \ldots 7]$, define

$$
\begin{aligned}
X^{[1 \ldots 7]-\{i\}} & :=X^{123456} \circ I, \\
Y^{[1 \ldots 7]-\{i\}} & :=Y^{123456} \circ I .
\end{aligned}
$$

Theorem (Scott)

$\mathbb{C}[G(3,7)]$ possesses 42 cluster variables:

- 28 Plücker coordinates $\Delta^{i j k}$, with $\{i, j, k\}$ an internal 3 -subset of [1...7];
- 14 quadratic regular functions $X^{[1 \ldots 7]-\{i\}}$ and $Y^{[1 \ldots 7]-\{i\}}$ defined above for $i \in[1 \ldots 7]$.

Cluster variables in $\mathbb{C}[G(3,8)]$

The dihedral group D_{n} acts on a $3 \times n$ matrix representing a point of the Grassmannian $G(3, n)$ by permuting the columns of the matrix. Equivalently it acts by permuting points of the configuration $\left[v_{1}\right], \ldots,\left[v_{n}\right] \in \mathbb{C P}^{2}$.
If $x \in \mathbb{C}[G(3, n)]$ is a cluster variable, then, for any $\rho \in D_{n}, x \circ \rho$ is, up to sign, another cluster variable, called a dihedral translate of x.

Theorem (Scott)

$\mathbb{C}[G(3,8)]$ possesses 128 cluster variables:

- 48 Plücker coordinates $\Delta^{i j k}$, with $\{i, j, k\}$ an internal 3 -subset of [1...8];
- 56 quadratic regular functions $X^{[1 \ldots 8]-\{i j\}}$ and $Y^{[1 \ldots 8]-\{i j\}}$ defined above for $1 \leqslant i<j \leqslant 8$.

Cluster variables in $\mathbb{C}[G(3,8)]$

Theorem (Scott)

- A a cubic regular function which vanishes on configurations of points of the type:

- $B\left(v_{1}, v_{2}, v_{3}, \ldots, v_{8}\right)=A\left(v_{2}, v_{1}, v_{3}, \ldots, v_{8}\right)$;
- 22 dihedral translates of A and B.

