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Grassmannians and Cluster Algebras

The coordinate ring of the Grassmannian G(2, n+ 3) is the Ptolemy
algebra An.
Clusters in An are parametrized by triangulations of a regular (n+ 3)-gon
P. In particular,

frozen variables correspond to the sides of P;

cluster variables correspond to the diagonals in a given triangulation
of P;

mutations are given by diagonal flips;

exchange relations are given by the short Plücker relations.

In “Grassmannians and Cluster Algebras”, J. Scott proved the coordinate
ring of any Grassmannian G(k, n) is a cluster algebra.



Contructing a π-diagram

In S7, consider the permutation

π =

(
1 2 3 4 5 6 7
4 5 6 7 1 2 3

)
Take a convex polygon with 14
vertices and label them
1′, 1, 2′, 2, . . . , 7′, 7 clockwise.

For i from 1 to 7, draw a path
in the interior of the polygon
joining i to π(i)′ and oriented
towards π(i)′. 1
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Compatibility relations

1 No path intersects itself.

2 All path intersections are
transversal.

3 As a path is traversed from
source to target, the paths
intersecting it must alternate in
orientation cutting it first right,
then left, right, . . . , finally left.

4 For any two paths i and j, the
following configuration is
forbidden
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Postnikov arrangements

Definition

Let π ∈ Sn. Label the vertices of a convex 2n-gon clockwise by the indices
1′, 1, 2′, 2, . . . , n′, n. A Postnikov arrangement for π (or a π-diagram) is a
collection of n oriented paths in the interior of the polygon; the i-th path
joins the vertex i with the vertex π(i)′ and is directed towards π(i)′. The
collection of paths must satisfy the compatibility relations 1− 4.

Postnikov arrangements are identified up to:

isotopy, i.e. distortions of the configuration that neither introduce nor
remove crossings;

untwisting conescutive crossings of two paths
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Labels in a π-diagram
A region in a π-diagram is called:

odd, if its boundary is oriented
(either clockwise or
counterclockwise);

even, if its boundary paths
alternate in orientation, i.e. if
the boundary of the region
changes orientation at every
intersection with another path.

The boundary of the 2n-gon is
oriented clockwise.

Label an even region with the index i
if the circuit obtained traversing the
i-th wire and then the boundary of
the polygon clockwise from π(i)′ to i
does not wind around the region.
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The Grassmann permutation
Let k, n be integers with 0 < k < n. We call

πk,n =

(
1 . . . n− k n− k + 1 . . . n

k + 1 . . . n 1 . . . k

)
the Grassmann permutation.

Proposition (Postnikov)

Let πk,n be the Grassmann permutation.

1 The number of even regions in a πk,n-diagram is k(n− k) + 1.

2 Each even region is labeled by exactly k indices from [1 . . . n].

3 The k-subsets labeling boundary cells are always the intervals

[1 . . . k], [2 . . . k + 1], [3 . . . k + 2], . . . , [n . . . k − 1].

4 Every k-subset in [1 . . . n] occurs as the labeling set of an even cell in
some πk,n-diagram.



Example: a π3,7-diagram

The permutation(
1 2 3 4 5 6 7
4 5 6 7 1 2 3

)
is the Grassmann permutation π3,7

There are 13 even cells.

Each even cell is labeled by three
distinct indices from [1 . . . 7].

There are 7 boundary cells labeled
by intervals in [1 . . . 7]. 1
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Geometric exchange
Given a π-diagram A and an even quadrilateral cell inside A, (|I| = k − 2
and i, j, s, t are distinct indices disjoint from I)
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Ijt Iij Iis

Iit
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a new π-diagram is constructed by the above local rearrangement, called a
geometric exchange.
The geometric exchange is an involution, provided we untwist consecutive
crossings after performing the exchange.

Proposition (Postnikov)

Let A and A′ be two πk,n-diagrams. Then there is a sequence of
geometric exchanges transforming A into A′.



Quadrilateral Postnikov Arrangements

For positive integers k and n with
n > k + 2 > 4 there exists a
πk,n-diagram, denoted as Ak,n, whose
internal even cells are all quadrilateral.

These arrangements are necessary for the
proof of the main result.
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The matrix of a πk,n-diagram
Two even regions of a Postnikov arrangement, with labels I and J , are
said to be neighbors if locally they are situated as follows

I J

I is said to be oriented towards J and J is said to be oriented away from I.
Given a πk,n-diagram A, let B̃(A) be the integer matrix with rows
indexed by the k-subset labels of A, columns indexed by the interior
k-subset labels of A and entries

bI,J =


1, if I is oriented towards J ,
−1, if I is oriented away from J ,

0, otherwise.

The principal submatrix B(A) is clearly skew-symmetric.



Example: B̃(A3,6)
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

136 236 346 356

136 0 1 0 -1
236 -1 0 1 0
346 0 -1 0 1
356 1 0 -1 0
123 0 -1 0 0
234 0 1 -1 0
345 0 0 1 0
456 0 0 0 -1
156 -1 0 0 1
126 1 0 0 0





The cluster algebra Ak,n

Let F be the field of rational functions generated by the indeterminates
[K] for k-subset labels K arising in the quadrilateral Postnikov
arrangement Ak,n.

Let Ak,n denote the cluster algebra generated inside F by the initial seed
(x(Ak,n), B̃(Ak,n)), where

x(Ak,n) = {[K] | K interior k-subset label in Ak,n}

and B̃(Ak,n) is the matrix defined earlier.

If K1, . . . ,Kn are the boundary k-subset labels in Ak,n, then Ak,n is an
algebra over the ring C[[K1], . . . , [Kn]].



Exchange relations in Ak,n
Let |I| = k − 2 and i, j, s, t are distinct indices disjoint from I.
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Theorem (Scott)

Each πk,n-diagram A gives rise to a seed (x(A), B̃(A)) in Ak,n whose
cluster variables are indexed by the interior k-subset labels of A and with
the property that if A′ is obtained from A by a single geometric exchange
through a quadrilateral cell labeled K in A, then µK(B̃(A)) = B̃(A′).

The exchange relation corresponding to the geometric exchange above is

[Ist][Iij] = [Iit][Ijs] + [Ijt][Iis].



Ak,n and C[G(k, n)]

Every k-subset K of [1 . . . n] identifies a Plücker coordinate ∆K in
C[G(k, n)].

In particular, identifying [K1], . . . , [Kn] with the Plücker coordinates
∆K1 , . . . ,∆Kn , we deduce that C[G(k, n)] has a natural structure of
algebra over C[[K1], . . . , [Kn]].

Theorem (Scott)

There is an isomorphism Ak,n → C[G(k, n)] of C[[K1], . . . , [Kn]]-algebras
sending [K] to ∆K for every k-subset K of [1 . . . n].

The proof is based on the ‘geometric realization criterion’ proved by Fomin
and Zelevinsky in “Cluster Algebra II”.



Grassmannians of finite type

Let n > 3. C[G(2, n)] is a cluster algebra of finite type: it has finitely
many seeds, corresponding to triangulations of a regular n-gon.

The cluster variables are the Plücker coordinates ∆ij for 1 6 i < j 6 n.

The Plücker coordinates are cluster variables in the coordinate ring of
G(k, n). However, in general, there will be more cluster variables than
Plücker coordinates.

Theorem (Scott)

G(3, 6), G(3, 7) and G(3, 8) are the only Grassmannians G(k, n), within
the range 2 < k 6 n

2 , whose coordinate rings are cluster algebras of finite
type.

To determine finiteness, we analyze the graph Γ(B(Ak,n)), where Ak,n is
the quadrilateral πk,n-diagram associated to the initial seed of Ak,n.



The infinite case

Let (k, n) 6= (3, 6), (3, 7), (3, 8). Then Γ(B(Ak,n)) contains, as an induced
subgraph, one of the following:

These two subgraphs contain, as induced subgraphs, a copy of the

extended Dynkin diagram D
(1)
6 .



C[G(3, 6)]
The graph Γ(B(A3,6)) is

∆356

∆136 ∆236

∆346

4

3 1
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By performing a sequence of mutations at 4, 2, 4, 1, we obtain

1 4

2

3

which is the Dynkin diagram D4.



C[G(3, 7)]
The graph Γ(B(A3,7)) is
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Through the sequence of mutations at the vertices 2, 4, 3, 5, 6, 5, 1, we
obtain
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which is the Dynkin diagram E6.



C[G(3, 8)]
The graph Γ(B(A3,8)) is
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Mutating at the nodes 1, 3, 7, 6, 5, 2, 4, 3, 8, 7, 6, we obtain
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which is the Dynkin diagram E8.



Projective plane geometry and cluster variables

Since C[G(3, n)], for n = 6, 7, 8, is a cluster algebra of finite type, we
would like to describe all its cluster variables. We already know some of
them are the Plücker coordinates.

As an element of C[G(3, n)], a cluster variable is a regular function on
G(3, n), so we can describe its vanishing locus.

A point in G(3, n) is a 3-dimensional vector subspace of Cn. As such, it is
identified by a 3× n matrix over C. The columns of this matrix define n
vectors v1, . . . , vn ∈ C3.

If we restrict ourselves to the open subset of G(3, n) where none of the vi
vanish, then we get a configuration of n points [v1], . . . , [vn] ∈ CP2.

With this setup, the Plücker coordinate ∆ijk vanishes on those points of
G(3, n) for which [vi], [vj ] and [vk] in the associated configuration are
colinear.

[vi] [vj][vk]



Cluster variables in C[G(3, 6)]
Theorem (Scott)

C[G(3, 6)] possesses 16 cluster variables:

14 Plücker coordinates ∆ijk, with {i, j, k} an internal 3-subset of
[1 . . . 6];

X123456 a quadratic regular function which vanishes on configurations
of points of the type:

[v1] [v2]

[v4]

[v3][v5]

[v6]

Y 123456(v1, v2, v3, v4, v5, v6) = X123456(v6, v1, v2, v3, v4, v5), another
quadratic regular function having the same type of vanishing locus as
X123456 but with the indices cyclically shifted.



Cluster variables in C[G(3, 7)]
Assume n > 6 and I ⊂ [1 . . . n] with |[1 . . . n]− I| = 6.
Let I : G(3, n)→ G(3, 6) be the projection that takes the 3× n matrix
representing a point in G(3, n) and drops the columns indexed by I.
For I = {i} ⊂ [1 . . . 7], define

X [1...7]−{i} := X123456 ◦ I,
Y [1...7]−{i} := Y 123456 ◦ I.

Theorem (Scott)

C[G(3, 7)] possesses 42 cluster variables:

28 Plücker coordinates ∆ijk, with {i, j, k} an internal 3-subset of
[1 . . . 7];

14 quadratic regular functions X [1...7]−{i} and Y [1...7]−{i} defined
above for i ∈ [1 . . . 7].



Cluster variables in C[G(3, 8)]

The dihedral group Dn acts on a 3× n matrix representing a point of the
Grassmannian G(3, n) by permuting the columns of the matrix.
Equivalently it acts by permuting points of the configuration
[v1], . . . , [vn] ∈ CP2.

If x ∈ C[G(3, n)] is a cluster variable, then, for any ρ ∈ Dn, x ◦ ρ is, up to
sign, another cluster variable, called a dihedral translate of x.

Theorem (Scott)

C[G(3, 8)] possesses 128 cluster variables:

48 Plücker coordinates ∆ijk, with {i, j, k} an internal 3-subset of
[1 . . . 8];

56 quadratic regular functions X [1...8]−{ij} and Y [1...8]−{ij} defined
above for 1 6 i < j 6 8.



Cluster variables in C[G(3, 8)]
Theorem (Scott)

A a cubic regular function which vanishes on configurations of points
of the type:

[v6] [v2]

[v3]

[v1] q
[v8]

[v5] [v7]

p

[v4]

B(v1, v2, v3, . . . , v8) = A(v2, v1, v3, . . . , v8);

22 dihedral translates of A and B.


