Grassmannians and Cluster Algebras

Federico Galetto

December 16, 2009

Grassmannians and Cluster Algebras

The coordinate ring of the Grassmannian G(2,n+3) is the Ptolemy algebra $\mathcal{A}_n.$

Clusters in \mathcal{A}_n are parametrized by triangulations of a regular (n+3)-gon \mathbb{P} . In particular,

- frozen variables correspond to the sides of \mathbb{P} ;
- cluster variables correspond to the diagonals in a given triangulation of $\mathbb{P};$
- mutations are given by diagonal flips;
- exchange relations are given by the short Plücker relations.

In "Grassmannians and Cluster Algebras", J. Scott proved the coordinate ring of any Grassmannian ${\cal G}(k,n)$ is a cluster algebra.

Contructing a π -diagram

• In S_7 , consider the permutation

- Take a convex polygon with 14 vertices and label them 1', 1, 2', 2, ..., 7', 7 clockwise.
- For *i* from 1 to 7, draw a path in the interior of the polygon joining *i* to $\pi(i)'$ and oriented towards $\pi(i)'$.

Compatibility relations

- No path intersects itself.
- All path intersections are transversal.
- As a path is traversed from source to target, the paths intersecting it must alternate in orientation cutting it first right, then left, right, ..., finally left.
- For any two paths i and j, the following configuration is forbidden

Postnikov arrangements

Definition

Let $\pi \in S_n$. Label the vertices of a convex 2n-gon clockwise by the indices $1', 1, 2', 2, \ldots, n', n$. A Postnikov arrangement for π (or a π -diagram) is a collection of n oriented paths in the interior of the polygon; the *i*-th path joins the vertex i with the vertex $\pi(i)'$ and is directed towards $\pi(i)'$. The collection of paths must satisfy the compatibility relations 1 - 4.

Postnikov arrangements are identified up to:

- *isotopy*, i.e. distortions of the configuration that neither introduce nor remove crossings;
- untwisting conescutive crossings of two paths

Labels in a π -diagram

A region in a π -diagram is called:

- odd, if its boundary is oriented (either clockwise or counterclockwise);
- even, if its boundary paths alternate in orientation, i.e. if the boundary of the region changes orientation at every intersection with another path.

The boundary of the $2n\mathchar{-}\mbox{gon}$ is oriented clockwise.

Label an even region with the index i if the circuit obtained traversing the i-th wire and then the boundary of the polygon clockwise from $\pi(i)'$ to i does not wind around the region.

The Grassmann permutation

Let k, n be integers with 0 < k < n. We call

$$\pi_{k,n} = \left(\begin{array}{ccccc} 1 & \dots & n-k & n-k+1 & \dots & n \\ k+1 & \dots & n & 1 & \dots & k \end{array}\right)$$

the Grassmann permutation.

Proposition (Postnikov)

Let $\pi_{k,n}$ be the Grassmann permutation.

- The number of even regions in a $\pi_{k,n}$ -diagram is k(n-k) + 1.
- **2** Each even region is labeled by exactly k indices from $[1 \dots n]$.
- The k-subsets labeling boundary cells are always the intervals

$$[1 \dots k], [2 \dots k+1], [3 \dots k+2], \dots, [n \dots k-1].$$

Every k-subset in [1...n] occurs as the labeling set of an even cell in some \u03c8_{k,n}-diagram.

Example: a $\pi_{3,7}$ -diagram

The permutation

is the Grassmann permutation $\pi_{3,7}$

- There are 13 even cells.
- Each even cell is labeled by three distinct indices from [1...7].
- There are 7 boundary cells labeled by intervals in [1...7].

Geometric exchange

Given a π -diagram **A** and an even quadrilateral cell inside **A**, (|I| = k - 2 and i, j, s, t are distinct indices disjoint from I)

a new π -diagram is constructed by the above local rearrangement, called a geometric exchange.

The geometric exchange is an involution, provided we untwist consecutive crossings after performing the exchange.

Proposition (Postnikov)

Let A and A' be two $\pi_{k,n}$ -diagrams. Then there is a sequence of geometric exchanges transforming A into A'.

Quadrilateral Postnikov Arrangements

For positive integers k and n with $n \ge k + 2 \ge 4$ there exists a $\pi_{k,n}$ -diagram, denoted as $\mathbf{A}_{k,n}$, whose internal even cells are all quadrilateral.

These arrangements are necessary for the proof of the main result.

The matrix of a $\pi_{k,n}$ -diagram

Two even regions of a Postnikov arrangement, with labels I and J, are said to be *neighbors* if locally they are situated as follows

I is said to be *oriented towards J* and *J* is said to be *oriented away* from *I*. Given a $\pi_{k,n}$ -diagram **A**, let $\tilde{\mathbf{B}}(\mathbf{A})$ be the integer matrix with rows indexed by the *k*-subset labels of **A**, columns indexed by the interior *k*-subset labels of **A** and entries

$$b_{I,J} = \begin{cases} 1, & \text{if } I \text{ is oriented towards } J, \\ -1, & \text{if } I \text{ is oriented away from } J, \\ 0, & \text{otherwise.} \end{cases}$$

The principal submatrix $\mathbf{B}(\mathbf{A})$ is clearly skew-symmetric.

Example: $\mathbf{\tilde{B}}(\mathbf{A}_{3,6})$

	136	236	346	356
136	Γ0	1	0	-1]
236	-1	0	1	0
346	0	-1	0	1
356	1	0	-1	0
123	0	-1	0	0
234	0	1	-1	0
345	0	0	1	0
456	0	0	0	-1
156	-1	0	0	1
126	L 1	0	0	0]

The cluster algebra $\mathcal{A}_{k,n}$

Let \mathcal{F} be the field of rational functions generated by the indeterminates [K] for k-subset labels K arising in the quadrilateral Postnikov arrangement $\mathbf{A}_{k,n}$.

Let $\mathcal{A}_{k,n}$ denote the cluster algebra generated inside \mathcal{F} by the initial seed $(\mathbf{x}(\mathbf{A}_{k,n}), \tilde{\mathbf{B}}(\mathbf{A}_{k,n}))$, where

 $\mathbf{x}(\mathbf{A}_{k,n}) = \{[K] \mid K \text{ interior } k \text{-subset label in } \mathbf{A}_{k,n}\}$

and $\tilde{\mathbf{B}}(\mathbf{A}_{k,n})$ is the matrix defined earlier.

If K_1, \ldots, K_n are the boundary k-subset labels in $\mathbf{A}_{k,n}$, then $\mathcal{A}_{k,n}$ is an algebra over the ring $\mathbb{C}[[K_1], \ldots, [K_n]]$.

Exchange relations in $\mathcal{A}_{k,n}$

Let |I| = k - 2 and i, j, s, t are distinct indices disjoint from I.

Theorem (Scott)

Each $\pi_{k,n}$ -diagram **A** gives rise to a seed $(\mathbf{x}(\mathbf{A}), \tilde{\mathbf{B}}(\mathbf{A}))$ in $\mathcal{A}_{k,n}$ whose cluster variables are indexed by the interior k-subset labels of **A** and with the property that if \mathbf{A}' is obtained from **A** by a single geometric exchange through a quadrilateral cell labeled K in **A**, then $\mu_K(\tilde{\mathbf{B}}(\mathbf{A})) = \tilde{\mathbf{B}}(\mathbf{A}')$.

The exchange relation corresponding to the geometric exchange above is

$$[Ist][Iij] = [Iit][Ijs] + [Ijt][Iis].$$

$\mathcal{A}_{k,n}$ and $\mathbb{C}[G(k,n)]$

Every k-subset K of $[1 \dots n]$ identifies a Plücker coordinate Δ^K in $\mathbb{C}[G(k,n)]$.

In particular, identifying $[K_1], \ldots, [K_n]$ with the Plücker coordinates $\Delta^{K_1}, \ldots, \Delta^{K_n}$, we deduce that $\mathbb{C}[G(k, n)]$ has a natural structure of algebra over $\mathbb{C}[[K_1], \ldots, [K_n]]$.

Theorem (Scott)

There is an isomorphism $\mathcal{A}_{k,n} \to \mathbb{C}[G(k,n)]$ of $\mathbb{C}[[K_1], \ldots, [K_n]]$ -algebras sending [K] to Δ^K for every k-subset K of $[1 \ldots n]$.

The proof is based on the 'geometric realization criterion' proved by Fomin and Zelevinsky in "Cluster Algebra II".

Grassmannians of finite type

Let $n \ge 3$. $\mathbb{C}[G(2, n)]$ is a cluster algebra of finite type: it has finitely many seeds, corresponding to triangulations of a regular *n*-gon.

The cluster variables are the Plücker coordinates Δ^{ij} for $1 \leq i < j \leq n$.

The Plücker coordinates are cluster variables in the coordinate ring of G(k, n). However, in general, there will be more cluster variables than Plücker coordinates.

Theorem (Scott)

G(3,6), G(3,7) and G(3,8) are the only Grassmannians G(k,n), within the range $2 < k \leq \frac{n}{2}$, whose coordinate rings are cluster algebras of finite type.

To determine finiteness, we analyze the graph $\Gamma(\mathbf{B}(\mathbf{A}_{k,n}))$, where $\mathbf{A}_{k,n}$ is the quadrilateral $\pi_{k,n}$ -diagram associated to the initial seed of $\mathcal{A}_{k,n}$.

The infinite case

Let $(k, n) \neq (3, 6), (3, 7), (3, 8)$. Then $\Gamma(\mathbf{B}(\mathbf{A}_{k,n}))$ contains, as an induced subgraph, one of the following:

These two subgraphs contain, as induced subgraphs, a copy of the extended Dynkin diagram $D_6^{(1)}$.

$\mathbb{C}[G(3,6)]$

By performing a sequence of mutations at 4, 2, 4, 1, we obtain

which is the Dynkin diagram D_4 .

$\mathbb{C}[G(3,7)]$

The graph $\Gamma(\mathbf{B}(\mathbf{A}_{3,7}))$ is

Through the sequence of mutations at the vertices 2, 4, 3, 5, 6, 5, 1, we obtain

which is the Dynkin diagram E_6 .

$\mathbb{C}[G(3,8)]$

which is the Dynkin diagram E_8 .

Projective plane geometry and cluster variables

Since $\mathbb{C}[G(3,n)]$, for n = 6, 7, 8, is a cluster algebra of finite type, we would like to describe all its cluster variables. We already know some of them are the Plücker coordinates.

As an element of $\mathbb{C}[G(3,n)]$, a cluster variable is a regular function on G(3,n), so we can describe its vanishing locus.

A point in G(3, n) is a 3-dimensional vector subspace of \mathbb{C}^n . As such, it is identified by a $3 \times n$ matrix over \mathbb{C} . The columns of this matrix define n vectors $v_1, \ldots, v_n \in \mathbb{C}^3$.

If we restrict ourselves to the open subset of G(3, n) where none of the v_i vanish, then we get a configuration of n points $[v_1], \ldots, [v_n] \in \mathbb{CP}^2$.

With this setup, the Plücker coordinate Δ^{ijk} vanishes on those points of G(3,n) for which $[v_i], [v_j]$ and $[v_k]$ in the associated configuration are colinear.

 $[v_i]$ $[v_k]$ $[v_j]$

Cluster variables in $\mathbb{C}[G(3,6)]$

Theorem (Scott)

 $\mathbb{C}[G(3,6)]$ possesses 16 cluster variables:

- 14 Plücker coordinates Δ^{ijk} , with $\{i, j, k\}$ an internal 3-subset of $[1 \dots 6]$;
- X^{123456} a quadratic regular function which vanishes on configurations of points of the type:

• $Y^{123456}(v_1, v_2, v_3, v_4, v_5, v_6) = X^{123456}(v_6, v_1, v_2, v_3, v_4, v_5)$, another quadratic regular function having the same type of vanishing locus as X^{123456} but with the indices cyclically shifted.

Cluster variables in $\mathbb{C}[G(3,7)]$

Assume n > 6 and $I \subset [1 \dots n]$ with $|[1 \dots n] - I| = 6$. Let $I : G(3, n) \to G(3, 6)$ be the projection that takes the $3 \times n$ matrix representing a point in G(3, n) and drops the columns indexed by I. For $I = \{i\} \subset [1 \dots 7]$, define

$$\begin{split} X^{[1\dots7]-\{i\}} &:= X^{123456} \circ I, \\ Y^{[1\dots7]-\{i\}} &:= Y^{123456} \circ I. \end{split}$$

Theorem (Scott)

 $\mathbb{C}[G(3,7)]$ possesses 42 cluster variables:

- 28 Plücker coordinates Δ^{ijk} , with $\{i, j, k\}$ an internal 3-subset of $[1 \dots 7]$;
- 14 quadratic regular functions $X^{[1...7]-\{i\}}$ and $Y^{[1...7]-\{i\}}$ defined above for $i \in [1 ... 7]$.

Cluster variables in $\mathbb{C}[G(3,8)]$

The dihedral group D_n acts on a $3 \times n$ matrix representing a point of the Grassmannian G(3,n) by permuting the columns of the matrix. Equivalently it acts by permuting points of the configuration $[v_1], \ldots, [v_n] \in \mathbb{CP}^2$.

If $x \in \mathbb{C}[G(3, n)]$ is a cluster variable, then, for any $\rho \in D_n$, $x \circ \rho$ is, up to sign, another cluster variable, called a *dihedral translate* of x.

Theorem (Scott)

 $\mathbb{C}[G(3,8)]$ possesses 128 cluster variables:

- 48 Plücker coordinates Δ^{ijk} , with $\{i, j, k\}$ an internal 3-subset of $[1 \dots 8]$;
- 56 quadratic regular functions $X^{[1...8]-\{ij\}}$ and $Y^{[1...8]-\{ij\}}$ defined above for $1 \leq i < j \leq 8$.

Cluster variables in $\mathbb{C}[G(3,8)]$

Theorem (Scott)

• A a cubic regular function which vanishes on configurations of points of the type:

- $B(v_1, v_2, v_3, \dots, v_8) = A(v_2, v_1, v_3, \dots, v_8);$
- 22 dihedral translates of A and B.