An introduction to Hodge algebras

Federico Galetto

May 28, 2009

The Grassmannian

Let k be a field, E a k-vector space of dimension m. Define

$$Grass(n, E) := \{V \subseteq E \mid \dim V = n\}.$$

If $\{e_1,\ldots,e_m\}$ is a basis of E and $\{v_1,\ldots,v_n\}$ is a basis of V, then

$$v_1 = a_{11}e_1 + \ldots + a_{1m}e_m,$$

$$\vdots$$

$$v_n = a_{n1}e_1 + \ldots + a_{nm}e_m.$$

Let *I* be any sequence of indeces $1 \le i_1 < \ldots < i_n \le m$ and denote by p_I the $n \times n$ minor of the matrix (a_{ji}) corresponding to the columns i_1, \ldots, i_n .

• dim $V = n \Rightarrow \exists I$ such that $p_I \neq 0$.

• Changing basis of V, we obtain the same p_l up to a scalar multiple.

The p_l are called *Plücker coordinates* and determine a point in $\mathbb{P}^{\binom{m}{n}-1}$.

The Plücker relations

Suppose we have $[p_I] \in \mathbb{P}^{\binom{m}{n}-1}$. Does it determine a subspace of *E*? It does if and only if its coordinates satisfy some homogeneous equations called *Plücker relations*.

For example, suppose $E = k^5$ and n = 2. The Plücker coordinates are the minors of

(a_{11}	a ₁₂	a ₁₃	a ₁₄ a ₂₄	a_{15}	
	a ₂₁	a ₂₂	a ₂₃	<i>a</i> ₂₄	a 25	J

Here we have the following Plücker relation:

$$\begin{aligned} &(a_{11}a_{24} - a_{21}a_{14})(a_{12}a_{23} - a_{22}a_{13})\\ &-(a_{11}a_{23} - a_{21}a_{13})(a_{12}a_{24} - a_{22}a_{14})\\ &+(a_{11}a_{22} - a_{21}a_{12})(a_{13}a_{24} - a_{23}a_{14}) = 0.\end{aligned}$$

In terms of minors, the equation becomes:

$$p_{14}p_{23}-p_{13}p_{24}+p_{12}p_{34}=0.$$

The coordinate ring of $Grass(n, k^m)$

Let $X = (X_{ij})$ be an $n \times m$ matrix of indeterminates over a field k $(n \leq m)$. Let $G_{n,m}$ be the subring of $k[X_{ij}]$ generated by all $n \times n$ minors of X. $G_{n,m}$ is the homogeneous coordinate ring of Grass (n, k^m) .

Let the symbol $i_1 \dots i_n$ denote the minor of X corresponding to the columns i_1, \dots, i_n . Notice that the symbol $i_1 \dots i_n$ is alternating in the indices i_1, \dots, i_n .

 $G_{n,m}$ is generated as a k-algebra by the set

$$H = \left\{ \boxed{i_1 \ \dots \ i_n} \mid 1 \leqslant i_1 < \dots < i_n \leqslant m \right\}.$$

If we regard the symbols of H as letters, we can say that an element in $G_{n,m}$ is a k-linear combination of monomials in those letters.

$G_{2,5}$: our running example $G_{2,5}$ is generated by 2 × 2 minors of

$$\left(\begin{array}{cccc} X_{11} & X_{12} & X_{13} & X_{14} & X_{15} \\ X_{21} & X_{22} & X_{23} & X_{24} & X_{25} \end{array}\right)$$

Hence it is a k-algebra generated by the set

We use the following notation for the product of two minors:

$$\begin{array}{c|c} 1 & 4 \\ \hline 2 & 3 \end{array} := 1 & 4 \\ \hline 1 & 4 \\ \hline 2 & 3 \end{array} = (X_{11}X_{24} - X_{21}X_{14})(X_{12}X_{23} - X_{22}X_{13}).$$

With this notation, the Plücker relation $p_{14}p_{23} - p_{13}p_{24} + p_{12}p_{34} = 0$ becomes:

$$\frac{\begin{array}{|c|c|}1 & 4 \\ \hline 2 & 3 \end{array}}{2 & 3} - \frac{\begin{array}{|c|}1 & 3 \\ \hline 2 & 4 \end{array}}{2 & 4} + \frac{\begin{array}{|c|}1 & 2 \\ \hline 3 & 4 \end{array}} = 0.$$

Standard monomials in $G_{n,m}$

To identify a monomial in the letters of H, we use the tableaux

i_1		in
j_1		jn
:	:	:
•	•	•
u_1		un

We call this a *standard* monomial if its rows are strictly increasing and its columns are weakly increasing.

Notice that if we multiply a standard monomial with a nonstandard one, we get a nonstandard monomial.

Claim: the standard monomials generate $G_{n,m}$ as a k-vector space.

To prove the claim, it is enough to show that a nonstandard product of two minors is a k-linear combination of standard monomials.

$G_{2,5}$: the straightening relations

Recall that the following Plücker relation

holds in $G_{2,5}$.

The monomial $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ is nonstandard, while $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ and $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ are both standard.

Hence we get the equation:

1	4		1	3		1	2]
2	3	-	2	4	_	3	4	j,

which is called straightening relation for the nonstandard monomial

$G_{2,5}$: the straightening relations

Here is a list of all nonstandard products of two minors in $G_{2,5}$ together with their straightening relations:

$G_{2,5}$: ordering the minors

Let $[i_1 | i_2], [j_1 | j_2] \in H$. Set

$$\boxed{i_1 \quad i_2} \leqslant \boxed{j_1 \quad j_2} \iff i_1 \leqslant j_1, i_2 \leqslant j_2.$$

 \leq is a partial order on *H*.

It is not total: for example, $\boxed{1 \ 4}$ and $\boxed{2 \ 3}$ are not comparable.

Now let us look at one straightening relation:

1	4		1	3	1	2	1
2	3	-	2	4	3	4	ŀ

Notice that 1 4 divides the l.h.s., while on the r.h.s. we have that:

•
$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$
 is divisible by $\begin{bmatrix} 1 & 3 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 1 & 3 \\ 3 \end{bmatrix} < \begin{bmatrix} 1 & 4 \\ 4 \end{bmatrix}$,

•
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 is divisible by $\begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix} < \begin{bmatrix} 1 & 4 \\ 4 \end{bmatrix}$.

A similarly property holds for 2 3 and for the other straightening relations (I will refer to it as the "H2" condition).

$G_{2,5}$: properties so far

 $G_{2,5}$, the homogeneous coordinate ring of $Grass(2, k^5)$:

• is a commutative k-algebra generated by

- is generated as a k-vector space by the standard monomials;
- is endowed with straightening relations that enable us to express the nonstandard monomials as k-linear combinations of the standard ones;
- comes with a partial order on the set of generators *H* that satisfies the H2 condition.

Monomials

Let H be a finite set.

Definition

A monomial on H is an element of \mathbb{N}^H , i.e. a function $M: H \to \mathbb{N}$.

If we think of H as the set of indeterminates in a polynomial ring k[H], then we can associate to M a monomial in the usual sense, namely

$$\prod_{x\in H} x^{M(x)}$$

Given two monomials $M, N \in \mathbb{N}^{H}$, their product is defined by:

$$(MN)(x) := M(x) + N(x).$$

We say that N divides M if $N(x) \leq M(x)$ for every $x \in H$.

Ideals of monomials

Definition

An *ideal of monomials* on *H* is a subset $\Sigma \subseteq \mathbb{N}^H$ such that

$$M \in \Sigma, \ N \in \mathbb{N}^H \Rightarrow MN \in \Sigma.$$

Definition

A monomial M is called *standard* with respect to the ideal Σ if $M \notin \Sigma$.

Definition

A generator of an ideal Σ is an element of Σ which is not divisible by any other element of Σ .

The set of generators of an ideal Σ is finite.

Hodge algebra

Consider

- R commutative ring;
- A commutative R-algebra;
- $H \subseteq A$ finite partially ordered set;
- Σ ideal of monomials on H.

To each monomial M on H, we can associate an element in A that we still denote by M:

$$M:=\prod_{x\in H}x^{M(x)}.$$

Hodge algebra

Definition

A is a Hodge algebra governed by Σ and generated by H if:

H1 *A* is a free *R*-module on the standard monomials with respect to Σ H2 if $N \in \Sigma$ is a generator and

$$N=\sum_i r_i M_i, \qquad 0\neq r_i\in R,$$

is the unique expression for $N \in A$ as a linear combination of standard monomials (guaranteed by H1), then for each $x \in H$

 $x | N \Rightarrow \forall i \exists y_i \in H \text{ such that } y_i | M_i \text{ and } y_i < x$

The relations in H2 are called the *straightening relations* of A.

 $G_{2,5}$: the Hodge algebra structure $G_{2,5}$ is a Hodge algebra over k generated by

governed by the ideal of monomials

$$\Sigma = \left< \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 2 & 5 \\ 3 & 4 \end{bmatrix} \right>$$

with straightening relations given by

Motivation

Hodge algebras arise as coordinate rings of algebraic varieties, for example

- Grassmannians;
- determinantal varieties;
- flag manifolds;
- Schubert varieties.

The discrete Hodge algebra

Definition

A Hodge algebra A is called *discrete* if the right hand side of all straightening relations is 0, i.e. if N = 0 in A for all $N \in \Sigma$.

If R[H] is the polynomial ring over R whose indeterminates are the elements of H, then

$R[H]/\Sigma R[H]$

is a discrete Hodge algebra and any other discrete Hodge algebra governed by $\boldsymbol{\Sigma}$ is isomorphic to it.

To measure how far a Hodge algebra A is from being discrete, we introduce the *indescrete part* $Ind A \subseteq H$ of A defined as

 $\{x \in H \mid x \text{ appears in the r.h.s. of the straightening relations for } A\}$

The simplification of Hodge algebras

Consider a multiplicative filtration of A, i.e. a chain of ideals

$$\mathcal{I}: A = I_0 \supseteq I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$$

such that $I_pI_q \subseteq I_{p+q} \ \forall p, q \ge 0$ and $R \cap I_1 = \{0\}$. To this filtration we can associate a new *R*-algebra by setting

$$\operatorname{gr}_{\mathcal{I}} A := A/I_1 \oplus I_1/I_2 \oplus I_2/I_3 \oplus \ldots$$

Theorem

If $x \in H$ is a minimal element of Ind A and

$$\mathcal{I} = \{x^n A\} : A \supseteq x A \supseteq x^2 A \supseteq x^3 A \supseteq \dots,$$

then $\operatorname{gr}_{\operatorname{\mathcal I}} A$ is a Hodge algebra governed by Σ with

 $\operatorname{Ind}(\operatorname{gr}_{\mathcal{I}} A) \subseteq \operatorname{Ind} A \setminus \{x\}.$

The simplification of Hodge algebras

Corollary

If A is a Hodge algebra governed by Σ , there is a sequence of elements $x_1, \ldots, x_n \in \text{Ind } A$ such that defining

$$A_n := A, \qquad A_{i-1} := \operatorname{gr}_{\{x_i^n A_i\}} A_i \quad \forall i = 1, \dots, n$$

we have:

- each A_i is a Hodge algebra governed by Σ
- x_i is minimal in Ind A_i
- A₀ is discrete.

This result may be viewed as a stepwise flat deformation, whose most general fiber is A and whose most special fiber is the discrete Hodge algebra $R[H]/\Sigma R[H]$.

Properties preserved under deformation

The previous result allows us to reduce many questions about a Hodge algebra A to questions about more nearly discrete and therefore simpler Hodge algebras.

In particular, many interesting properties that are satisfied by A_0 are preserved under the deformation and are also satisfied by A.

Theorem

- If A_0 is reduced, then A is.
- If A₀ is Cohen-Macaulay, then A is.
- If A_0 is Gorenstein, then A is.
- If R is a field or \mathbb{Z} , then dim $A = \dim A_0$.

Ideals generated by monomials

Recall that discrete Hodge algebras are isomorphic to $R[H]/\Sigma R[H]$, i.e. they are quotients of polynomial rings modulo ideals generated by monomials.

Proposition

Suppose R is a domain. Let Σ be an ideal of monomials and set $I = \Sigma R[H]$.

- I is prime $\iff \Sigma$ is generated by a subset of H.
- I is radical $\iff \Sigma$ is generated by square-free monomials.
- *I* is primary ⇔ whenever x ∈ H divides a generator of Σ, there is a generator which is a power of x.
- The associated primes of *I* are all generated by subsets *H*.

 $G_{2,5}$: the discrete Hodge algebra

The discrete Hodge algebra A_0 obtained by deforming $G_{2,5}$, is the polynomial ring:

modulo the ideal

$$I = \left(\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 2 & 5 \\ 3 & 4 \end{bmatrix} \right)$$

For example, we may notice that:

- A_0 is not a domain, since I is not generated by a subset of H;
- A_0 is reduced, since *I* is generated by square-free monomials. As a consequence, we deduce that $G_{2,5}$ is reduced.

Simplicial complexes

Let H be a finite set.

Definition

We say Δ is a *simplicial complex* with vertex set *H*, if Δ is a collection of subsets of *H* (called *faces*) such that:

- $\forall x \in H, \{x\} \in \Delta;$
- $T \subseteq S \in \Delta \Rightarrow T \in \Delta$.

Definition

The *dimension* of a face S in Δ is defined as |S| - 1.

Definition

The dimension of Δ is the maximum of the dimensions of its faces.

Ideals of monomials and simplicial complexes Let $S \subseteq H$ and define a monomial $\chi_S \in \mathbb{N}^H$ by

$$\chi_{\mathcal{S}}(x) := \begin{cases} 1, & x \in \mathcal{S} \\ 0, & x \notin \mathcal{S} \end{cases}$$

Suppose $\Sigma \subseteq \mathbb{N}^{\mathcal{H}}$ is an ideal of monomials such that

• Σ is generated by square-free monomials;

•
$$\forall x \in H, \chi_{\{x\}} \notin \Sigma.$$

If we define

$$\Delta := \{ S \subseteq H \mid \chi_S \notin \Sigma \} \,,$$

then Δ is a simplicial complex with vertex set H.

Proposition

- The minimal primes of A₀ are generated by the complements of the maximal faces of Δ.
- If R is Noetherian, then dim A₀ = dim R + dim Δ + 1 and height HA₀ = dim Δ + 1.

$G_{2,5}$: the dimension of $G_{2,5}$

Recall

$$\Sigma = \left< \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 2 & 5 \\ 3 & 4 \end{bmatrix} \right>$$

If we construct Δ as before, the maximal faces are

Therefore

$$\dim A_0 = \dim k + \dim \Delta + 1 = 0 + 6 + 1 = 7.$$

As a consequence, dim $G_{2,5} = 7$.

Wonderful posets

Let H be a poset.

Definition

An element $y \in H$ is a *cover* of an element $x \in H$ if x < y and no element of H is properly between x and y.

Definition

H is *wonderful* if the following condition holds in the poset $H \cup \{-\infty, \infty\}$ obtained by adjoining least and greatest elements to *H*:

if $y_1, y_2 < z$ are covers of an element x, then there is an element $y \leq z$ which is a cover of both y_1 and y_2 .

Some terminology for posets

Let H be a finite poset.

Definition

A chain in H is a totally ordered set $X \subseteq H$; its length is |X| - 1.

Definition

The dimension of H is the maximum of the lengths of chains in H.

Definition

The *height* of an element $x \in H$, denoted ht x, is the maximum of the lengths of chains descending from x.

$G_{2,5}$: *H* is a wonderful poset

On the left is a diagram of the poset H for $G_{2,5}$ (smaller elements appear on the bottom). We see that:

- *H* is a wonderful poset;
- dim H = 6;
- the elements of height *i* are the ones appearing on the *i*-th row starting from the bottom and counting from 0.

Recall

$$\Sigma = \left\langle \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 2 & 5 \\ 3 & 4 \end{bmatrix} \right\rangle$$

Notice that Σ is generated by the products of the pairs of elements which are incomparable in the partial order on H.

Wonderful posets and regular sequences

Let A be a Hodge algebra generated by H and governed by Σ .

Definition

A is called *ordinal* if Σ is generated by the products of the pairs of elements which are incomparable in the partial order on H.

Theorem

Let A be an ordinal Hodge algebra and set

$$p_i = \sum_{x \in H: ht x=i} x.$$

If H is wonderful and dim H = n, then p_0, \ldots, p_n is a regular sequence.

$G_{2,5}$: a regular sequence

Let A_0 be the discrete Hodge algebra obtained from $G_{2,5}$. The elements:

form a regular sequence in HA_0 . Since dim $A_0 = 7$, A_0 is Cohen-Macaulay. As a consequence, $G_{2,5}$ is Cohen-Macaulay.

References

- De Concini, C., Eisenbud, D., Procesi, C.: Hodge algebras, Astérisque 91 (1982)
- De Concini, C., Eisenbud, D., Procesi, C.: Young diagrams and determinantal varieties, Inventiones math. 56, 129–165 (1980)