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The Grassmannian

Let k be a field, E a k-vector space of dimension m. Define

Grass(n,E ) := {V ⊆ E | dim V = n}.

If {e1, . . . , em} is a basis of E and {v1, . . . , vn} is a basis of V , then

v1 = a11e1 + . . .+ a1mem,

...

vn = an1e1 + . . .+ anmem.

Let I be any sequence of indeces 1 6 i1 < . . . < in 6 m and denote by pI

the n× n minor of the matrix (aji ) corresponding to the columns i1, . . . , in.

dim V = n⇒ ∃I such that pI 6= 0.

Changing basis of V , we obtain the same pI up to a scalar multiple.

The pI are called Plücker coordinates and determine a point in P(m
n)−1.



The Plücker relations
Suppose we have [pI ] ∈ P(m

n)−1. Does it determine a subspace of E ?
It does if and only if its coordinates satisfy some homogeneous equations
called Plücker relations.
For example, suppose E = k5 and n = 2. The Plücker coordinates are the
minors of (

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

)
Here we have the following Plücker relation:

(a11a24 − a21a14)(a12a23 − a22a13)

−(a11a23 − a21a13)(a12a24 − a22a14)

+(a11a22 − a21a12)(a13a24 − a23a14) = 0.

In terms of minors, the equation becomes:

p14p23 − p13p24 + p12p34 = 0.



The coordinate ring of Grass(n, km)

Let X = (Xij) be an n×m matrix of indeterminates over a field k (n 6 m).
Let Gn,m be the subring of k[Xij ] generated by all n × n minors of X .
Gn,m is the homogeneous coordinate ring of Grass(n, km).

Let the symbol i1 . . . in denote the minor of X corresponding to the
columns i1, . . . , in. Notice that the symbol i1 . . . in is alternating in the
indices i1, . . . , in.

Gn,m is generated as a k-algebra by the set

H =
{

i1 . . . in | 1 6 i1 < . . . < in 6 m
}
.

If we regard the symbols of H as letters, we can say that an element in
Gn,m is a k-linear combination of monomials in those letters.



G2,5: our running example
G2,5 is generated by 2× 2 minors of(

X11 X12 X13 X14 X15

X21 X22 X23 X24 X25

)

Hence it is a k-algebra generated by the set

H =
{

1 2 , 1 3 , 1 4 , 1 5 , 2 3 ,

2 4 , 2 5 , 3 4 , 3 5 , 4 5
}
.

We use the following notation for the product of two minors:

1 4
2 3

:= 1 4 · 2 3 = (X11X24 − X21X14)(X12X23 − X22X13).

With this notation, the Plücker relation p14p23 − p13p24 + p12p34 = 0
becomes:

1 4
2 3

− 1 3
2 4

+
1 2
3 4

= 0.



Standard monomials in Gn,m

To identify a monomial in the letters of H, we use the tableaux

i1 . . . in
j1 . . . jn
...

...
...

u1 . . . un

We call this a standard monomial if its rows are strictly increasing and its
columns are weakly increasing.
Notice that if we multiply a standard monomial with a nonstandard one,
we get a nonstandard monomial.

Claim: the standard monomials generate Gn,m as a k-vector space.

To prove the claim, it is enough to show that a nonstandard product of
two minors is a k-linear combination of standard monomials.



G2,5: the straightening relations

Recall that the following Plücker relation

1 4
2 3

− 1 3
2 4

+
1 2
3 4

= 0

holds in G2,5.

The monomial
1 4
2 3

is nonstandard, while
1 3
2 4

and
1 2
3 4

are both

standard.
Hence we get the equation:

1 4
2 3

=
1 3
2 4

− 1 2
3 4

,

which is called straightening relation for the nonstandard monomial
1 4
2 3

.



G2,5: the straightening relations

Here is a list of all nonstandard products of two minors in G2,5 together
with their straightening relations:

1 4
2 3

=
1 3
2 4

− 1 2
3 4

1 5
2 3

=
1 3
2 5

− 1 2
3 5

1 5
2 4

=
1 4
2 5

− 1 2
4 5

1 5
3 4

=
1 4
3 5

− 1 3
4 5

2 5
3 4

=
2 4
3 5

− 2 3
4 5



G2,5: ordering the minors

Let i1 i2 , j1 j2 ∈ H. Set

i1 i2 6 j1 j2 ⇐⇒ i1 6 j1, i2 6 j2.

6 is a partial order on H.
It is not total: for example, 1 4 and 2 3 are not comparable.
Now let us look at one straightening relation:

1 4
2 3

=
1 3
2 4

− 1 2
3 4

.

Notice that 1 4 divides the l.h.s., while on the r.h.s. we have that:
1 3
2 4

is divisible by 1 3 and 1 3 < 1 4 ,

1 2
3 4

is divisible by 1 2 and 1 2 < 1 4 .

A similarly property holds for 2 3 and for the other straightening
relations (I will refer to it as the “H2” condition).



G2,5: properties so far

G2,5, the homogeneous coordinate ring of Grass(2, k5):

is a commutative k-algebra generated by

H =
{

1 2 , 1 3 , 1 4 , 1 5 , 2 3 ,

2 4 , 2 5 , 3 4 , 3 5 , 4 5
}

;

is generated as a k-vector space by the standard monomials;

is endowed with straightening relations that enable us to express the
nonstandard monomials as k-linear combinations of the standard ones;

comes with a partial order on the set of generators H that satisfies
the H2 condition.



Monomials

Let H be a finite set.

Definition

A monomial on H is an element of NH , i.e. a function M : H → N.

If we think of H as the set of indeterminates in a polynomial ring k[H],
then we can associate to M a monomial in the usual sense, namely∏

x∈H

xM(x).

Given two monomials M,N ∈ NH , their product is defined by:

(MN)(x) := M(x) + N(x).

We say that N divides M if N(x) 6 M(x) for every x ∈ H.



Ideals of monomials

Definition

An ideal of monomials on H is a subset Σ ⊆ NH such that

M ∈ Σ, N ∈ NH ⇒ MN ∈ Σ.

Definition

A monomial M is called standard with respect to the ideal Σ if M /∈ Σ.

Definition

A generator of an ideal Σ is an element of Σ which is not divisible by any
other element of Σ.

The set of generators of an ideal Σ is finite.



Hodge algebra

Consider

R commutative ring;

A commutative R-algebra;

H ⊆ A finite partially ordered set;

Σ ideal of monomials on H.

To each monomial M on H, we can associate an element in A that we still
denote by M:

M :=
∏
x∈H

xM(x).



Hodge algebra

Definition

A is a Hodge algebra governed by Σ and generated by H if:

H1 A is a free R-module on the standard monomials with respect to Σ

H2 if N ∈ Σ is a generator and

N =
∑

i

riMi , 0 6= ri ∈ R,

is the unique expression for N ∈ A as a linear combination of standard
monomials (guaranteed by H1), then for each x ∈ H

x |N ⇒ ∀i ∃yi ∈ H such that yi |Mi and yi < x

The relations in H2 are called the straightening relations of A.



G2,5: the Hodge algebra structure
G2,5 is a Hodge algebra over k generated by

H =
{

1 2 , 1 3 , 1 4 , 1 5 , 2 3 ,

2 4 , 2 5 , 3 4 , 3 5 , 4 5
}

governed by the ideal of monomials

Σ =

〈
1 4
2 3

,
1 5
2 3

,
1 5
2 4

,
1 5
3 4

,
2 5
3 4

〉
with straightening relations given by

1 4
2 3

=
1 3
2 4

− 1 2
3 4

1 5
2 3

=
1 3
2 5

− 1 2
3 5

1 5
2 4

=
1 4
2 5

− 1 2
4 5

1 5
3 4

=
1 4
3 5

− 1 3
4 5

2 5
3 4

=
2 4
3 5

− 2 3
4 5



Motivation

Hodge algebras arise as coordinate rings of algebraic varieties, for example

Grassmannians;

determinantal varieties;

flag manifolds;

Schubert varieties.



The discrete Hodge algebra

Definition

A Hodge algebra A is called discrete if the right hand side of all
straightening relations is 0, i.e. if N = 0 in A for all N ∈ Σ.

If R[H] is the polynomial ring over R whose indeterminates are the
elements of H, then

R[H]/ΣR[H]

is a discrete Hodge algebra and any other discrete Hodge algebra governed
by Σ is isomorphic to it.

To measure how far a Hodge algebra A is from being discrete, we
introduce the indescrete part Ind A ⊆ H of A defined as

{x ∈ H | x appears in the r.h.s. of the straightening relations for A}



The simplification of Hodge algebras

Consider a multiplicative filtration of A, i.e. a chain of ideals

I : A = I0 ⊇ I1 ⊇ I2 ⊇ I3 ⊇ . . .

such that IpIq ⊆ Ip+q ∀p, q > 0 and R ∩ I1 = {0}.
To this filtration we can associate a new R-algebra by setting

grI A := A/I1 ⊕ I1/I2 ⊕ I2/I3 ⊕ . . .

Theorem

If x ∈ H is a minimal element of Ind A and

I = {xnA} : A ⊇ xA ⊇ x2A ⊇ x3A ⊇ . . . ,

then grI A is a Hodge algebra governed by Σ with

Ind(grI A) ⊆ Ind A \ {x}.



The simplification of Hodge algebras

Corollary

If A is a Hodge algebra governed by Σ, there is a sequence of elements
x1, . . . , xn ∈ Ind A such that defining

An := A, Ai−1 := gr{xn
i Ai} Ai ∀i = 1, . . . , n

we have:

each Ai is a Hodge algebra governed by Σ

xi is minimal in Ind Ai

A0 is discrete.

This result may be viewed as a stepwise flat deformation, whose most
general fiber is A and whose most special fiber is the discrete Hodge
algebra R[H]/ΣR[H].



Properties preserved under deformation

The previous result allows us to reduce many questions about a Hodge
algebra A to questions about more nearly discrete and therefore simpler
Hodge algebras.
In particular, many interesting properties that are satisfied by A0 are
preserved under the deformation and are also satisfied by A.

Theorem

If A0 is reduced, then A is.

If A0 is Cohen-Macaulay, then A is.

If A0 is Gorenstein, then A is.

If R is a field or Z, then dim A = dim A0.



Ideals generated by monomials

Recall that discrete Hodge algebras are isomorphic to R[H]/ΣR[H], i.e.
they are quotients of polynomial rings modulo ideals generated by
monomials.

Proposition

Suppose R is a domain. Let Σ be an ideal of monomials and set
I = ΣR[H].

I is prime ⇐⇒ Σ is generated by a subset of H.

I is radical ⇐⇒ Σ is generated by square-free monomials.

I is primary ⇐⇒ whenever x ∈ H divides a generator of Σ, there is a
generator which is a power of x .

The associated primes of I are all generated by subsets H.



G2,5: the discrete Hodge algebra

The discrete Hodge algebra A0 obtained by deforming G2,5, is the
polynomial ring:

k
[

1 2 , 1 3 , 1 4 , 1 5 , 2 3 ,

2 4 , 2 5 , 3 4 , 3 5 , 4 5
]

modulo the ideal

I =

(
1 4
2 3

,
1 5
2 3

,
1 5
2 4

,
1 5
3 4

,
2 5
3 4

)
For example, we may notice that:

A0 is not a domain, since I is not generated by a subset of H;

A0 is reduced, since I is generated by square-free monomials.

As a consequence, we deduce that G2,5 is reduced.



Simplicial complexes

Let H be a finite set.

Definition

We say ∆ is a simplicial complex with vertex set H, if ∆ is a collection of
subsets of H (called faces) such that:

∀x ∈ H, {x} ∈ ∆;

T ⊆ S ∈ ∆⇒ T ∈ ∆.

Definition

The dimension of a face S in ∆ is defined as |S | − 1.

Definition

The dimension of ∆ is the maximum of the dimensions of its faces.



Ideals of monomials and simplicial complexes
Let S ⊆ H and define a monomial χS ∈ NH by

χS(x) :=

{
1, x ∈ S
0, x /∈ S

Suppose Σ ⊆ NH is an ideal of monomials such that

Σ is generated by square-free monomials;

∀x ∈ H, χ{x} /∈ Σ.

If we define
∆ := {S ⊆ H | χS /∈ Σ} ,

then ∆ is a simplicial complex with vertex set H.

Proposition

The minimal primes of A0 are generated by the complements of the
maximal faces of ∆.

If R is Noetherian, then dim A0 = dim R + dim ∆ + 1 and
height HA0 = dim ∆ + 1.



G2,5: the dimension of G2,5

Recall

Σ =

〈
1 4
2 3

,
1 5
2 3

,
1 5
2 4

,
1 5
3 4

,
2 5
3 4

〉
If we construct ∆ as before, the maximal faces are{

1 2 , 1 3 , 1 4 , 1 5 , 2 5 , 3 5 , 4 5
}

,{
1 2 , 1 3 , 1 4 , 2 4 , 2 5 , 3 5 , 4 5

}
,{

1 2 , 1 3 , 1 4 , 2 4 , 3 4 , 3 5 , 4 5
}

,{
1 2 , 1 3 , 2 3 , 2 4 , 2 5 , 3 5 , 4 5

}
,{

1 2 , 1 3 , 2 3 , 2 4 , 3 4 , 3 5 , 4 5
}

.

Therefore

dim A0 = dim k + dim ∆ + 1 = 0 + 6 + 1 = 7.

As a consequence, dim G2,5 = 7.



Wonderful posets

Let H be a poset.

Definition

An element y ∈ H is a cover of an element x ∈ H if x < y and no element
of H is properly between x and y .

Definition

H is wonderful if the following condition holds in
the poset H ∪ {−∞,∞} obtained by adjoining
least and greatest elements to H:
if y1, y2 < z are covers of an element x , then
there is an element y 6 z which is a cover of
both y1 and y2.

!"#$
x

!"#$
y1 !"#$

y2

!"#$
∃y

!"#$
z

...........
...........

...........
...........

...........
...........

..

...........
...........
...........
...........
...........
...........
..

...........
..
...........
..
...........
..

...........
..

...........
..

...........
..

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
......

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
......

........

.....

........

.....

........

.....

........

.....

........

...

1



Some terminology for posets

Let H be a finite poset.

Definition

A chain in H is a totally ordered set X ⊆ H; its length is |X | − 1.

Definition

The dimension of H is the maximum of the lengths of chains in H.

Definition

The height of an element x ∈ H, denoted ht x , is the maximum of the
lengths of chains descending from x .



G2,5: H is a wonderful poset
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On the left is a diagram of the poset H for G2,5

(smaller elements appear on the bottom).
We see that:

H is a wonderful poset;

dim H = 6;

the elements of height i are the ones
appearing on the i-th row starting from the
bottom and counting from 0.

Recall

Σ =

〈
1 4
2 3

,
1 5
2 3

,
1 5
2 4

,
1 5
3 4

,
2 5
3 4

〉
Notice that Σ is generated by the products of
the pairs of elements which are incomparable in
the partial order on H.



Wonderful posets and regular sequences

Let A be a Hodge algebra generated by H and governed by Σ.

Definition

A is called ordinal if Σ is generated by the products of the pairs of
elements which are incomparable in the partial order on H.

Theorem

Let A be an ordinal Hodge algebra and set

pi =
∑

x∈H:ht x=i

x .

If H is wonderful and dim H = n, then p0, . . . , pn is a regular sequence.



G2,5: a regular sequence
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Let A0 be the discrete Hodge algebra obtained
from G2,5.
The elements:

p0 = 1 2

p1 = 1 3

p2 = 1 4 + 2 3

p3 = 1 5 + 2 4

p4 = 2 5 + 3 4

p5 = 3 5

p6 = 4 5

form a regular sequence in HA0.
Since dim A0 = 7, A0 is Cohen-Macaulay.
As a consequence, G2,5 is Cohen-Macaulay.
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