# An introduction to Hodge algebras 

Federico Galetto

May 28, 2009

## The Grassmannian

Let $k$ be a field, $E$ a $k$-vector space of dimension $m$. Define

$$
\operatorname{Grass}(n, E):=\{V \subseteq E \mid \operatorname{dim} V=n\} .
$$

If $\left\{e_{1}, \ldots, e_{m}\right\}$ is a basis of $E$ and $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of $V$, then

$$
\begin{aligned}
v_{1} & =a_{11} e_{1}+\ldots+a_{1 m} e_{m} \\
\vdots & \\
v_{n} & =a_{n 1} e_{1}+\ldots+a_{n m} e_{m}
\end{aligned}
$$

Let $I$ be any sequence of indeces $1 \leqslant i_{1}<\ldots<i_{n} \leqslant m$ and denote by $p_{I}$ the $n \times n$ minor of the matrix $\left(a_{j i}\right)$ corresponding to the columns $i_{1}, \ldots, i_{n}$.

- $\operatorname{dim} V=n \Rightarrow \exists I$ such that $p_{I} \neq 0$.
- Changing basis of $V$, we obtain the same $p_{I}$ up to a scalar multiple.

The $p_{I}$ are called Plücker coordinates and determine a point in $\mathbb{P}\binom{m}{n}-1$.

## The Plücker relations

Suppose we have $\left[p_{l}\right] \in \mathbb{P}^{\binom{m}{n}-1}$. Does it determine a subspace of $E$ ? It does if and only if its coordinates satisfy some homogeneous equations called Plücker relations. For example, suppose $E=k^{5}$ and $n=2$. The Plücker coordinates are the minors of

$$
\left(\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25}
\end{array}\right)
$$

Here we have the following Plücker relation:

$$
\begin{aligned}
& \left(a_{11} a_{24}-a_{21} a_{14}\right)\left(a_{12} a_{23}-a_{22} a_{13}\right) \\
- & \left(a_{11} a_{23}-a_{21} a_{13}\right)\left(a_{12} a_{24}-a_{22} a_{14}\right) \\
+ & \left(a_{11} a_{22}-a_{21} a_{12}\right)\left(a_{13} a_{24}-a_{23} a_{14}\right)=0 .
\end{aligned}
$$

In terms of minors, the equation becomes:

$$
p_{14} p_{23}-p_{13} p_{24}+p_{12} p_{34}=0
$$

## The coordinate ring of $\operatorname{Grass}\left(n, k^{m}\right)$

Let $X=\left(X_{i j}\right)$ be an $n \times m$ matrix of indeterminates over a field $k(n \leqslant m)$. Let $G_{n, m}$ be the subring of $k\left[X_{i j}\right]$ generated by all $n \times n$ minors of $X$. $G_{n, m}$ is the homogeneous coordinate ring of $\operatorname{Grass}\left(n, k^{m}\right)$.

Let the symbol \begin{tabular}{|l|l|l|}
$i_{1}$ \& $\ldots$ \& $i_{n}$ <br>
\hline

 denote the minor of $X$ corresponding to the columns $i_{1}, \ldots, i_{n}$. Notice that the symbol 

$i_{1}$ \& $\ldots$ \& $i_{n}$ <br>
\hline
\end{tabular} is alternating in the indices $i_{1}, \ldots, i_{n}$.

$G_{n, m}$ is generated as a $k$-algebra by the set

$$
H=\left\{\begin{array}{|l|l|l|}
\hline i_{1} & \ldots & i_{n} \\
\hline
\end{array} 1 \leqslant i_{1}<\ldots<i_{n} \leqslant m\right\} .
$$

If we regard the symbols of $H$ as letters, we can say that an element in $G_{n, m}$ is a $k$-linear combination of monomials in those letters.

## $G_{2,5}$ : our running example

$G_{2,5}$ is generated by $2 \times 2$ minors of

$$
\left(\begin{array}{lllll}
x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \\
x_{21} & X_{22} & x_{23} & X_{24} & x_{25}
\end{array}\right)
$$

Hence it is a $k$-algebra generated by the set

We use the following notation for the product of two minors:

$$
\begin{array}{|l|l}
\hline 1 & 4 \\
\hline 2 & 3 \\
\hline
\end{array}: \begin{array}{|l|l|l|}
\hline 1 & 4 \\
\hline
\end{array} \cdot \begin{array}{|l|l}
2 & 3 \\
\hline
\end{array}=\left(X_{11} X_{24}-X_{21} X_{14}\right)\left(X_{12} X_{23}-X_{22} X_{13}\right) .
$$

With this notation, the Plücker relation $p_{14} p_{23}-p_{13} p_{24}+p_{12} p_{34}=0$ becomes:

$$
\begin{array}{|l|l|}
\hline 1 & 4 \\
\hline 2 & 3 \\
\hline
\end{array}-\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & 4 \\
\hline
\end{array}+\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array}=0 .
$$

## Standard monomials in $G_{n, m}$

To identify a monomial in the letters of $H$, we use the tableaux

| $i_{1}$ | $\ldots$ | $i_{n}$ |
| :---: | :---: | :---: |
| $j_{1}$ | $\ldots$ | $j_{n}$ |
| $\vdots$ | $\vdots$ | $\vdots$ |
| $u_{1}$ | $\ldots$ | $u_{n}$ |

We call this a standard monomial if its rows are strictly increasing and its columns are weakly increasing.
Notice that if we multiply a standard monomial with a nonstandard one, we get a nonstandard monomial.

Claim: the standard monomials generate $G_{n, m}$ as a $k$-vector space.
To prove the claim, it is enough to show that a nonstandard product of two minors is a $k$-linear combination of standard monomials.

## $G_{2,5}$ : the straightening relations

Recall that the following Plücker relation

$$
\begin{array}{|l|l|}
\hline 1 & 4 \\
\hline 2 & 3 \\
\hline
\end{array}-\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & 4 \\
\hline
\end{array}+\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array}=0
$$

holds in $G_{2,5}$.

The monomial \begin{tabular}{|l|l}
1 \& 4 <br>
\cline { 2 - 4 } \& 2 <br>
\hline

 is nonstandard, while 

\hline 1 \& 3 <br>
\hline 2 \& 4 <br>
\hline

 and 

\hline 1 \& 2 <br>
\hline 3 \& 4 <br>
\hline
\end{tabular} are both standard.

Hence we get the equation:

$$
\begin{array}{|l|l|}
\hline 1 & 4 \\
\hline 2 & 3 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & 4 \\
\hline
\end{array}-\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array}
$$

which is called straightening relation for the nonstandard monomial | 1 | 4 |
| :--- | :--- |
| 2 | 3 |.

## $G_{2,5}$ : the straightening relations

Here is a list of all nonstandard products of two minors in $G_{2,5}$ together with their straightening relations:

| 1 | 4 |  | 1 | 3 | - | 1 | 2 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 |  | 2 | 4 |  | 3 | 4 | 4 |
| 1 | 5 |  | 1 | 3 |  | 1 | 2 | 2 |
| 2 | 3 |  | 2 | 5 |  | 3 | 5 | 5 |
| 1 | 5 |  | 1 | 4 |  | 1 |  | 2 |
| 2 | 4 |  | 2 | 5 |  | 4 | 5 | 5 |
| 1 | 5 |  | 1 | 4 |  | 1 | 3 | 3 |
| 3 | 4 |  | 3 | 5 |  | 4 | 5 | 5 |
| 2 | 5 |  | 2 | 4 |  | 2 | 3 | 3 |
| 3 | 4 |  | 3 | 5 |  | 4 | 5 | 5 |

## $G_{2,5}$ : ordering the minors

Let | $i_{1}$ | $i_{2}$ |  |  |
| :--- | :--- | :--- | :--- |
|  | $j_{1}$ | $j_{2}$ |  |

$$
\begin{array}{|l|l|l|}
\hline i_{1} & i_{2} & \begin{array}{|l|l|}
j_{1} & j_{2} \\
\hline
\end{array} \Longleftrightarrow i_{1} \leqslant j_{1}, i_{2} \leqslant j_{2} . \\
\hline
\end{array}
$$

$\leqslant$ is a partial order on $H$.

It is not total: for example, | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- | Now let us look at one straightening relation:

$$
\begin{array}{|l|l|}
\hline 1 & 4 \\
\hline 2 & 3 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & 4 \\
\hline
\end{array}-\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array} .
$$

Notice that | 1 | 4 |
| :--- | :--- |
| divides the l.h.s., while on the r.h.s. we have that: |  |

- | 1 | 3 |
| :--- | :--- |
| 2 | 4 | is divisible by | 1 | 3 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 3 | 3 |
- | 1 | 2 |
| :--- | :--- |
| 3 | 4 | is divisible by | 1 | 2 |
| :--- | :--- | and | 1 | 2 |
| :--- | :--- |$<$| 1 | 4 |
| :--- | :--- |.

A similarly property holds for | 2 | 3 |
| :--- | :--- | :--- | and for the other straightening relations (I will refer to it as the " H 2 " condition).

## $G_{2,5}$ : properties so far

$G_{2,5}$, the homogeneous coordinate ring of $\operatorname{Grass}\left(2, k^{5}\right)$ :

- is a commutative $k$-algebra generated by

$$
\begin{array}{r}
H=\left\{\begin{array}{ll|l}
\hline 1 & 2
\end{array}, \begin{array}{|l|l}
\hline 1 & 3 \\
\hline
\end{array}, \begin{array}{|l|l|l}
1 & 4 \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline 1 & 5 \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline 2 & 5 & 3 \\
\hline
\end{array},\right. \\
\hline
\end{array}
$$

- is generated as a $k$-vector space by the standard monomials;
- is endowed with straightening relations that enable us to express the nonstandard monomials as $k$-linear combinations of the standard ones;
- comes with a partial order on the set of generators $H$ that satisfies the H 2 condition.


## Monomials

Let $H$ be a finite set.

## Definition

A monomial on $H$ is an element of $\mathbb{N}^{H}$, i.e. a function $M: H \rightarrow \mathbb{N}$.
If we think of $H$ as the set of indeterminates in a polynomial ring $k[H]$, then we can associate to $M$ a monomial in the usual sense, namely

$$
\prod_{x \in H} x^{M(x)} .
$$

Given two monomials $M, N \in \mathbb{N}^{H}$, their product is defined by:

$$
(M N)(x):=M(x)+N(x) .
$$

We say that $N$ divides $M$ if $N(x) \leqslant M(x)$ for every $x \in H$.

## Ideals of monomials

## Definition

An ideal of monomials on $H$ is a subset $\Sigma \subseteq \mathbb{N}^{H}$ such that

$$
M \in \Sigma, N \in \mathbb{N}^{H} \Rightarrow M N \in \Sigma
$$

## Definition

A monomial $M$ is called standard with respect to the ideal $\Sigma$ if $M \notin \Sigma$.

## Definition

A generator of an ideal $\Sigma$ is an element of $\Sigma$ which is not divisible by any other element of $\Sigma$.

The set of generators of an ideal $\Sigma$ is finite.

## Hodge algebra

Consider

- $R$ commutative ring;
- A commutative $R$-algebra;
- $H \subseteq A$ finite partially ordered set;
- $\Sigma$ ideal of monomials on $H$.

To each monomial $M$ on $H$, we can associate an element in $A$ that we still denote by $M$ :

$$
M:=\prod_{x \in H} x^{M(x)} .
$$

## Hodge algebra

## Definition

$A$ is a Hodge algebra governed by $\Sigma$ and generated by $H$ if:
H1 $A$ is a free $R$-module on the standard monomials with respect to $\Sigma$
H 2 if $N \in \Sigma$ is a generator and

$$
N=\sum_{i} r_{i} M_{i}, \quad 0 \neq r_{i} \in R
$$

is the unique expression for $N \in A$ as a linear combination of standard monomials (guaranteed by H 1 ), then for each $x \in H$

$$
x \mid N \Rightarrow \forall i \exists y_{i} \in H \text { such that } y_{i} \mid M_{i} \text { and } y_{i}<x
$$

The relations in H 2 are called the straightening relations of $A$.
$G_{2,5}$ : the Hodge algebra structure
$G_{2,5}$ is a Hodge algebra over $k$ generated by

$$
\begin{aligned}
& H=\left\{\begin{array}{|l|l|l|l|}
\hline 1 & 2 \\
\hline
\end{array}, \left.\begin{array}{|l|l|l|l|l|l|}
\hline & 3 & 3 & 4 & 4 \\
\hline & 1 & 5 \\
\hline
\end{array} \right\rvert\, \begin{array}{ll}
2 & 3 \\
\hline
\end{array},\right. \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 4 & 5 & 4 \\
\hline
\end{array}
\end{aligned}
$$

governed by the ideal of monomials

$$
\Sigma=\left\langle\begin{array}{|l|l}
\hline 1 & 4 \\
\hline 2 & 3
\end{array}, \begin{array}{|l|l|}
\hline 1 & 5 \\
\hline 2 & 3
\end{array}, \begin{array}{|l|l|}
\hline 1 & 5 \\
2 & 4 \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 1 & 5 \\
3 & 4 \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline & 5 \\
\hline 3 & 4 \\
\hline
\end{array}\right\rangle
$$

with straightening relations given by

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline 1 & 4 \\
\hline 2 & 3 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & 4 \\
\hline
\end{array}-\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 1 & 5 \\
\hline 2 & 4 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline 1 & 4 \\
\hline 2 & 5 \\
\hline
\end{array}-\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 4 & 5 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 2 & 5 \\
\hline 3 & 4 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline 2 & 4 \\
\hline 3 & 5 \\
\hline
\end{array}-\begin{array}{|l|l|}
\hline 2 & 3 \\
\hline 4 & 5 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 1 & 5 \\
\hline 2 & 3 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & 5 \\
\hline
\end{array}-\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 5 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 1 & 5 \\
\hline 3 & 4 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline 1 & 4 \\
\hline 3 & 5 \\
\hline
\end{array}-\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 4 & 5 \\
\hline
\end{array}
\end{aligned}
$$

## Motivation

Hodge algebras arise as coordinate rings of algebraic varieties, for example

- Grassmannians;
- determinantal varieties;
- flag manifolds;
- Schubert varieties.


## The discrete Hodge algebra

## Definition

A Hodge algebra $A$ is called discrete if the right hand side of all straightening relations is 0 , i.e. if $N=0$ in $A$ for all $N \in \Sigma$.

If $R[H]$ is the polynomial ring over $R$ whose indeterminates are the elements of $H$, then

$$
R[H] / \Sigma R[H]
$$

is a discrete Hodge algebra and any other discrete Hodge algebra governed by $\Sigma$ is isomorphic to it.

To measure how far a Hodge algebra $A$ is from being discrete, we introduce the indescrete part $\operatorname{Ind} A \subseteq H$ of $A$ defined as
$\{x \in H \mid x$ appears in the r.h.s. of the straightening relations for $A\}$

## The simplification of Hodge algebras

Consider a multiplicative filtration of $A$, i.e. a chain of ideals

$$
\mathcal{I}: A=I_{0} \supseteq I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \ldots
$$

such that $I_{p} I_{q} \subseteq I_{p+q} \forall p, q \geqslant 0$ and $R \cap I_{1}=\{0\}$.
To this filtration we can associate a new $R$-algebra by setting

$$
\operatorname{gr}_{\mathcal{I}} A:=A / l_{1} \oplus I_{1} / l_{2} \oplus I_{2} / l_{3} \oplus \ldots
$$

Theorem
If $x \in H$ is a minimal element of $\operatorname{Ind} A$ and

$$
\mathcal{I}=\left\{x^{n} A\right\}: A \supseteq x A \supseteq x^{2} A \supseteq x^{3} A \supseteq \ldots,
$$

then $\operatorname{gr}_{\mathcal{I}} A$ is a Hodge algebra governed by $\Sigma$ with $\operatorname{Ind}\left(\operatorname{gr}_{\mathcal{I}} A\right) \subseteq \operatorname{Ind} A \backslash\{x\}$.

## The simplification of Hodge algebras

## Corollary

If $A$ is a Hodge algebra governed by $\Sigma$, there is a sequence of elements $x_{1}, \ldots, x_{n} \in \operatorname{Ind} A$ such that defining

$$
A_{n}:=A, \quad A_{i-1}:=\operatorname{gr}_{\left\{x_{i}^{n} A_{i}\right\}} A_{i} \forall i=1, \ldots, n
$$

we have:

- each $A_{i}$ is a Hodge algebra governed by $\Sigma$
- $x_{i}$ is minimal in Ind $A_{i}$
- $A_{0}$ is discrete.

This result may be viewed as a stepwise flat deformation, whose most general fiber is $A$ and whose most special fiber is the discrete Hodge algebra $R[H] / \Sigma R[H]$.

## Properties preserved under deformation

The previous result allows us to reduce many questions about a Hodge algebra $A$ to questions about more nearly discrete and therefore simpler Hodge algebras.
In particular, many interesting properties that are satisfied by $A_{0}$ are preserved under the deformation and are also satisfied by $A$.

Theorem

- If $A_{0}$ is reduced, then $A$ is.
- If $A_{0}$ is Cohen-Macaulay, then $A$ is.
- If $A_{0}$ is Gorenstein, then $A$ is.
- If $R$ is a field or $\mathbb{Z}$, then $\operatorname{dim} A=\operatorname{dim} A_{0}$.


## Ideals generated by monomials

Recall that discrete Hodge algebras are isomorphic to $R[H] / \Sigma R[H]$, i.e. they are quotients of polynomial rings modulo ideals generated by monomials.

## Proposition

Suppose $R$ is a domain. Let $\Sigma$ be an ideal of monomials and set $I=\Sigma R[H]$.

- $I$ is prime $\Longleftrightarrow \Sigma$ is generated by a subset of $H$.
- $I$ is radical $\Longleftrightarrow \Sigma$ is generated by square-free monomials.
- $I$ is primary $\Longleftrightarrow$ whenever $x \in H$ divides a generator of $\Sigma$, there is a generator which is a power of $x$.
- The associated primes of $I$ are all generated by subsets $H$.


## $G_{2,5}$ : the discrete Hodge algebra

The discrete Hodge algebra $A_{0}$ obtained by deforming $G_{2,5}$, is the polynomial ring:

$$
\begin{aligned}
& k \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 1 & 3 & 4 & 4 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 4 & 4 & 5 & 5 \\
\hline
\end{array}
\end{aligned}
$$

modulo the ideal

$$
I=\left(\begin{array}{|l|l}
\hline 1 & 4 \\
\hline 2 & 3
\end{array}, \begin{array}{|l|l|}
\hline 1 & 5 \\
\hline 2 & 3
\end{array}, \begin{array}{|c|c|}
\hline 1 & 5 \\
2 & 4 \\
\hline
\end{array}, \begin{array}{|l|l|l|l|}
\hline 1 & 5 \\
3 & 4 \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 3 & 5 \\
\hline
\end{array}\right)
$$

For example, we may notice that:

- $A_{0}$ is not a domain, since $I$ is not generated by a subset of $H$;
- $A_{0}$ is reduced, since $l$ is generated by square-free monomials.

As a consequence, we deduce that $G_{2,5}$ is reduced.

## Simplicial complexes

Let $H$ be a finite set.

## Definition

We say $\Delta$ is a simplicial complex with vertex set $H$, if $\Delta$ is a collection of subsets of $H$ (called faces) such that:

- $\forall x \in H,\{x\} \in \Delta$;
- $T \subseteq S \in \Delta \Rightarrow T \in \Delta$.


## Definition

The dimension of a face $S$ in $\Delta$ is defined as $|S|-1$.

## Definition

The dimension of $\Delta$ is the maximum of the dimensions of its faces.

## Ideals of monomials and simplicial complexes

Let $S \subseteq H$ and define a monomial $\chi_{S} \in \mathbb{N}^{H}$ by

$$
\chi_{S}(x):= \begin{cases}1, & x \in S \\ 0, & x \notin S\end{cases}
$$

Suppose $\Sigma \subseteq \mathbb{N}^{H}$ is an ideal of monomials such that

- $\Sigma$ is generated by square-free monomials;
- $\forall x \in H, \chi_{\{x\}} \notin \Sigma$.

If we define

$$
\Delta:=\left\{S \subseteq H \mid \chi_{S} \notin \Sigma\right\}
$$

then $\Delta$ is a simplicial complex with vertex set $H$.

## Proposition

- The minimal primes of $A_{0}$ are generated by the complements of the maximal faces of $\Delta$.
- If $R$ is Noetherian, then $\operatorname{dim} A_{0}=\operatorname{dim} R+\operatorname{dim} \Delta+1$ and height $H A_{0}=\operatorname{dim} \Delta+1$.
$G_{2,5}$ : the dimension of $G_{2,5}$
Recall

$$
\Sigma=\left\langle\begin{array}{|l|l|}
\hline 1 & 4 \\
\hline 2 & 3 \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 1 & 5 \\
\hline 2 & 3 \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 1 & 5 \\
\hline 2 & 4 \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 1 & 5 \\
\hline 3 & 4 \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 2 & 5 \\
\hline 3 & 4 \\
\hline
\end{array}\right\rangle
$$

If we construct $\Delta$ as before, the maximal faces are





- $\left\{\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline 1 & 2 & 3 & 4 & 4 \\ \hline\end{array}\right\}$.

Therefore

$$
\operatorname{dim} A_{0}=\operatorname{dim} k+\operatorname{dim} \Delta+1=0+6+1=7
$$

As a consequence, $\operatorname{dim} G_{2,5}=7$.

## Wonderful posets

Let $H$ be a poset.

## Definition

An element $y \in H$ is a cover of an element $x \in H$ if $x<y$ and no element of $H$ is properly between $x$ and $y$.

## Definition

$H$ is wonderful if the following condition holds in the poset $H \cup\{-\infty, \infty\}$ obtained by adjoining least and greatest elements to $H$ : if $y_{1}, y_{2}<z$ are covers of an element $x$, then there is an element $y \leqslant z$ which is a cover of both $y_{1}$ and $y_{2}$.


## Some terminology for posets

Let $H$ be a finite poset.

## Definition

A chain in $H$ is a totally ordered set $X \subseteq H$; its length is $|X|-1$.

## Definition

The dimension of $H$ is the maximum of the lengths of chains in $H$.

## Definition

The height of an element $x \in H$, denoted ht $x$, is the maximum of the lengths of chains descending from $x$.

## $G_{2,5}: H$ is a wonderful poset



On the left is a diagram of the poset $H$ for $G_{2,5}$ (smaller elements appear on the bottom).
We see that:

- $H$ is a wonderful poset;
- $\operatorname{dim} H=6$;
- the elements of height $i$ are the ones appearing on the $i$-th row starting from the bottom and counting from 0 .
Recall

$$
\Sigma=\left\langle\begin{array}{|l|l}
\hline 1 & 4 \\
\hline 2 & 3
\end{array}, \begin{array}{|l|l|}
\hline 1 & 5 \\
\hline 2 & 3 \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 1 & 5 \\
2 & 4 \\
\hline
\end{array}, \begin{array}{|l|l|l|l|}
\hline 1 & 5 \\
3 & 4 \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 3 & 5 \\
\hline 3 & 4 \\
\hline
\end{array}\right\rangle
$$

Notice that $\Sigma$ is generated by the products of the pairs of elements which are incomparable in the partial order on $H$.

## Wonderful posets and regular sequences

Let $A$ be a Hodge algebra generated by $H$ and governed by $\Sigma$.

## Definition

$A$ is called ordinal if $\Sigma$ is generated by the products of the pairs of elements which are incomparable in the partial order on $H$.

Theorem
Let $A$ be an ordinal Hodge algebra and set

$$
p_{i}=\sum_{x \in H: \operatorname{ht} x=i} x .
$$

If $H$ is wonderful and $\operatorname{dim} H=n$, then $p_{0}, \ldots, p_{n}$ is a regular sequence.

## $G_{2,5}$ : a regular sequence



Let $A_{0}$ be the discrete Hodge algebra obtained from $G_{2,5}$.
The elements:

$$
\begin{aligned}
& p_{0}=\begin{array}{l|l|}
\hline 1 & 2 \\
\hline
\end{array} \\
& p_{1}=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline
\end{array} \\
& p_{2}=\begin{array}{|l|l|}
\hline 1 & 4 \\
\hline
\end{array}+\begin{array}{|l|l|}
\hline 2 & 3 \\
\hline
\end{array} \\
& p_{3}=\begin{array}{|l|l|}
\hline 1 & 5 \\
\hline
\end{array}+\begin{array}{|l|l|}
\hline 2 & 4 \\
\hline
\end{array} \\
& p_{4}=\begin{array}{|l|l|}
\hline 2 & 5 \\
\hline
\end{array}+\begin{array}{|l|l|}
\hline 3 & 4 \\
\hline
\end{array} \\
& p_{5}=\begin{array}{|l|l|}
\hline 3 & 5 \\
\hline
\end{array} \\
& p_{6}=\begin{array}{|l|l|}
\hline 4 & 5 \\
\hline
\end{array}
\end{aligned}
$$

form a regular sequence in $H A_{0}$.
Since $\operatorname{dim} A_{0}=7, A_{0}$ is Cohen-Macaulay.
As a consequence, $G_{2,5}$ is Cohen-Macaulay.

## References

- De Concini, C., Eisenbud, D., Procesi, C.: Hodge algebras, Astérisque 91 (1982)
- De Concini, C., Eisenbud, D., Procesi, C.: Young diagrams and determinantal varieties, Inventiones math. 56, 129-165 (1980)

