Generalized Tanisaki ideals and the cohomology of Hessenberg varieties

February 11, 2011

Tanisaki ideals

Let $n \in \mathbb{Z}_+$ and $\mu = (\mu_1, \dots, \mu_n)$ a partition of n.

Let $\mathfrak{N}(\mu)$ be the set of nilpotent matrices in $Mat_n(\mathbb{C})$ whose Jordan canonical form has blocks of size μ_1, \ldots, μ_n .

De Concini and Procesi (1981) defined the ideal in $\mathbb{Q}[x_1,\ldots,x_n]$ of the schematic intersection $\overline{\mathfrak{N}(\mu)} \cap Diag_n(\mathbb{C})$.

Tanisaki (1982) simplified the construction of this ideal, now called (by some) Tanisaki ideal I_{μ} .

Garsia and Procesi (1992) described some properties of the quotient ring

$$R_{\mu} := \mathbb{Q}[x_1, \dots, x_n]/I_{\mu}$$

and gave a combinatorial rule to construct a monomial basis of R_{μ} .

Springer varieties

Let ${\mathfrak F}$ be the full flag variety

$$\mathfrak{F} := \{ V_1 \subseteq \ldots \subseteq V_n = \mathbb{C}^n \mid \forall i, \text{ dim } V_i = i \}.$$

Definition (Springer variety)

For $X \in \mathfrak{N}(\mu)$, define the *Springer variety*

$$\mathfrak{S}_X := \{ \{ V_1 \subseteq \ldots \subseteq V_n \} \in \mathfrak{F} \mid \forall i, \ XV_i \subseteq V_i \}.$$

If $Y = A^{-1}XA$ for some $A \in GL_n(\mathbb{C})$, then $\mathfrak{S}_Y \cong \mathfrak{S}_X$ (so we could replace the index X by the partition μ).

The cohomology ring $H^*(\mathfrak{S}_X)$ carries a symmetric group action. This action was discovered by Springer (1976) and later described by De Concini and Procesi.

In particular, $H^*(\mathfrak{S}_X) \cong R_{\mu}$.

Hessenberg varieties

Definition (Hessenberg function)

An n-tuple $h = (h_1, \ldots, h_n)$ is a Hessenberg function if

- $i \leqslant h_i \leqslant n, \forall i \in \{1, \dots, n\},$
- $h_i \leqslant h_{i+1}$, $\forall i \in \{1, \dots, n-1\}$.

Example (n = 6)h = (2, 3, 3, 5, 5, 6).

Definition (Nilpotent Hessenberg variety)

Let $X \in Mat_n(\mathbb{C})$, X nilpotent.

$$\mathfrak{S}(X,h):=\{\{V_1\subseteq\ldots\subseteq V_n\}\in\mathfrak{F}\mid orall i\;XV_i\subseteq V_{h_i}\}.$$

- Examples
- For $h=(n,\ldots,n)$, $\mathfrak{H}(X,h)=\mathfrak{F}$.
 - For $h = (1, \dots, n)$, $\mathfrak{H}(X, h) = \mathfrak{S}_X$.

Generalizing I_{μ}

Can we generalize I_{μ} to an ideal $I_{\mu,h}$ of $\mathbb{Q}[x_1,\ldots,x_n]$ such that

$$H^*(\mathfrak{H}(X,h)) \cong \mathbb{Q}[x_1,\ldots,x_n]/I_{\mu,h}?$$

Recent work by Mbirika and Tymoczko suggests this is possible at least for regular nilpotent Hessenberg varieties, corresponding to $\mu=(n)$.

The case $\mu=(n)$ corresponds to a matrix X with a single Jordan block. For most of this talk we fix $\mu=(n)$, so μ will be suppressed in the notation unless needed.

I present the construction and some properties of the generalized ideal I_h . After recalling what is known about $H^*(\mathfrak{H}(X,h))$, I will show how it is related to $\mathbb{Q}[x_1,\ldots,x_n]/I_h$.

Truncated elementary symmetric functions

Definition (Truncated elementary symmetric function)

For $S \subseteq \{1, \ldots, n\}$ and d > 0,

$$e_d(S) := \sum_{\{i_1 < \dots < i_d\} \subseteq S} x_{i_1} \dots x_{i_d}.$$

Example (n=4)

$$e_2(1,2) = x_1 x_2$$

$$e_2(1,2,3) = x_1 x_2 + x_1 x_3 + x_2 x_3$$

A few conventions:

- if d=0, then $e_d(S)=1$ for all S;
 - $\bullet \ \ \text{if} \ d<0 \ \text{and} \ S\neq\varnothing \text{, then} \ e_d(S)=0;$
 - if d > |S|, then $e_d(S) = 0$.

h-Ferrer diagrams

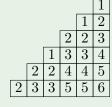
Definition (h-Ferrer diagram)

Let $h = (h_1, \ldots, h_n)$ be a Hessenberg function.

- \bullet Draw the diagram of the staircase partition $(1,\dots,n)$ flush right and bottom.
- ullet Fill the bottom row with the numbers h_1,\ldots,h_n from left to right.
- Fill each columns with decreasing entries from bottom to top.

Example (n = 6)

$$h = (2, 3, 3, 5, 5, 6)$$



Ideals I_h

For a Hessenberg function $h = (h_1, \ldots, h_n)$, introduce the set

$$\mathfrak{C}_h := \bigcup_{i=1}^n \{e_{h_i-r}(1,\ldots,h_i) \mid 0 \leqslant r \leqslant i-1\}.$$

The element $e_{h_i-r}(1,\ldots,h_i)$ in \mathfrak{C}_h corresponds to the box in the *i*-th column and (r+1)-st row of the *h*-Ferrer diagram.

Example
$$(n=4)$$

$$h = (3, 3, 3, 4)$$

$$\begin{array}{c|cccc} & 1 \\ \hline 1 & 2 \\ \hline 2 & 2 & 3 \\ \hline 3 & 3 & 3 & 4 \\ \end{array}$$

$$\mathfrak{C}_h = \{e_3(1,2,3), e_2(1,2,3), e_1(1,2,3), e_4, e_3, e_2, e_1\}.$$

Ideals I_h

Definition (Generalized Tanisaki ideal)

$$I_h := (\mathfrak{C}_h) \subseteq \mathbb{Q}[x_1, \dots, x_n].$$

A few observations:

• for all
$$h$$
, $\mathfrak{C}_h \supseteq \{e_1, \ldots, e_n\}$;

$$ullet$$
 if $h=(n,\ldots,n)$, then $\mathfrak{C}_h=(e_1,\ldots,e_n)$;

• if
$$h = (1, ..., n)$$
, then

$$\mathfrak{C}_h \supseteq (e_1(1), e_1(1, 2), \dots, e_1(1, \dots, n))$$

$$\begin{array}{c|c} \cdot & 2 \\ \hline 1 & \vdots \\ 2 & n \end{array}$$

so
$$I_h = (x_1, ..., x_n)$$
.

Poset on Hessenberg functions

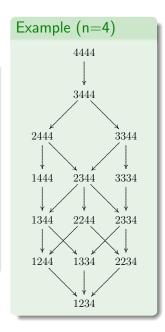
Definition

Let $h = (h_1, \dots, h_n)$ and $h' = (h'_1, \dots, h'_n)$ be Hessenberg functions.

$$h \geqslant h' \iff h_i \geqslant h_i', \ \forall i.$$

We say h > h' are adjacent if there is an edge connecting them in the Hasse diagram on Hessenberg functions, i.e.

- $h_{i_0} = h'_{i_0} + 1$, for some i_0 ;
- $h_{i_0} = h'_{i_0}$, for all $i \neq i_0$.



Poset on ideals I_h

Theorem

If h > h', then $I_h \subset I_{h'}$.

Sketch of proof.

Enough to consider h > h' adjacent, so $h_{i_0} = h'_{i_0} + 1$ for some i_0 and $h_i = h'_i$ for all $i \neq i_0$. Equivalently, the h- and h'-Ferrer diagrams are identical except in column i_0 .

Need to show: the generators $e_{h_{i_0}-r}(1,\ldots,h_{i_0})\in\mathfrak{C}_h$, for $0\leqslant r\leqslant i_0-1$, also lie in $I_{h'}$.

$$e_{h_{i_0}-r}(1,\ldots,h_{i_0}) = e_{h'_{i_0}+1-r}(1,\ldots,h'_{i_0}+1) =$$

$$= x_{h'_{i_0}+1} \underbrace{e_{h'_{i_0}-r}(1,\ldots,h'_{i_0})}_{\in I_{h'}} + \underbrace{e_{h'_{i_0}+1-r}(1,\ldots,h'_{i_0})}_{\in I_{h'}}.$$

Poset on ideals I_h It is not true in general that $\mathfrak{C}_h \subset \mathfrak{C}_{h'}$, when h > h', even if they are

adjacent.

Example
$$(n=4)$$

$$h = (3, 4, 4, 4), \ \mathfrak{C}_h = \{e_3(1, 2, 3) = x_1x_2x_3, e_1, e_2, e_3, e_4\}$$

 $h' = (2, 4, 4, 4), \ \mathfrak{C}_{h'} = \{e_2(1, 2) = x_1x_2, e_1, e_2, e_3, e_4\}$

Lemma

Suppose h > h' are adjacent with $h_{i_0} = h'_{i_0} + 1$. If $h_{i_0} = h'_{k}$ for some $k > i_0$, then $\mathfrak{C}_h \subset \mathfrak{C}_{h'}$.

Example
$$(n=4)$$

$$h \quad (2, 2, 2, 4)$$

$$h = (2, 3, 3, 4),$$

$$\mathfrak{C}_h = \{e_2(1, 2), e_1(1, 2, 3), e_2(1, 2, 3), e_3(1, 2, 3), e_1, e_2, e_3, e_4\}$$

$$h' = (2, 2, 3, 4),$$

 $\mathfrak{C}_{h'} = \{e_1(1, 2), e_2(1, 2), e_1(1, 2, 3), e_2(1, 2, 3), e_3(1, 2, 3), e_1, e_2, e_3, e_4\}$

Generator-containment sequences

Theorem

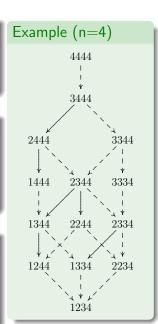
For each Hessenberg function $h > (1, \ldots, n)$, there exists at least one adjacent function h' with both h > h' and $\mathfrak{C}_h \subset \mathfrak{C}_{h'}$.

Definition (Generator-containment sequence)

Let $h=f_1>\ldots>f_r=h'$ be a sequence of Hessenberg functions such that f_i and f_{i+1} are adjacent. If $\mathfrak{C}_{f_i}\subset\mathfrak{C}_{f_{i+1}}$, the sequence is a generator-containment sequence from h to h'.

Corollary

Given a Hessenberg function h, there exists a g.c.s. from h to $(1, \ldots, n)$. In particular, the g.c.s.'s form a spanning subgraph of the Hasse diagram on Hessenberg functions.



Reduced generating set for I_h

The generating set \mathfrak{C}_h is often highly nonminimal.

Definition (Antidiagonal ideal)

$$I_h^{AD} := (\{e_{h_i-i+1}(1,\ldots,h_i) \mid 1 \leqslant i \leqslant n\}).$$

 I_h^{AD} is 'generated by antidiagonal boxes' of the $h\text{-}\mathsf{Ferrer}$ diagram.

Theorem

$$I_h^{AD} = I_h.$$

Sketch of proof.

$$I_h^{AD}\subseteq I_h$$
, so it's enough to show $\mathfrak{C}_h\subseteq I_h^{AD}$.

- <u>Claim</u>: $e_{h_i}(1,...,h_i) \in I_h^{AD}$ (bottom row generators)
 - For i=1, $e_{h_1}(1,\ldots,h_1)\in I_h^{AD}$ by definition.
 - For i > 1, $e_{h_i}(1, \ldots, h_i) = x_1 \ldots x_{h_i} = x_{h_1+1} \ldots x_{h_i} e_{h_1}(1, \ldots, h_1)$.

Reduced generating set for I_h

Sketch of proof (continued).

<u>Claim</u>: $e_{h_i-r}(1,\ldots,h_i) \in I_h^{AD}$ (*i*-th column generators)

- For i=2, clear.
- For $i \ge 2$ and $h_{i+1} = h_i$, the (i+1)-st and i-th column coincide.
- For $i \geqslant 2$ and $h_{i+1} > h_i$, for all $s \in \{1, \dots, i-1\}$

$$e_{h_{i+1}-s}(1,\ldots,h_{i+1}) = \sum_{t=0}^{h_{i+1}-h_i} e_t(h_i+1,\ldots,h_{i+1})e_{h_{i+1}-s-t}(1,\ldots,h_i)$$

and $t\leqslant h_{i+1}-h_i$ implies $h_{i+1}-s-t\geqslant h_i-s$ so the right hand side lies in I_h^{AD} .

Degree tuples

Definition (Degree tuple)

An *n*-tuple $\beta = (\beta_n, \dots, \beta_1)$ is a degree tuple if

- $1 \leqslant \beta_i \leqslant i$, $\forall i \in \{1, \ldots, n\}$,
- $\bullet \ \beta_i \beta_{i-1} \leqslant 1, \ \forall i \in \{2, \dots, n\}.$

Example (n=6)

$$\beta = (1, 2, 1, 2, 2, 1).$$

Proposition

There is a bijective correspondence

$$\{\text{Hessenberg functions}\} \stackrel{F}{\longleftrightarrow} \{\text{degree tuples}\}.$$

For $h=(h_1,\ldots,h_n)$, we have $\beta=F(h)$, where $\beta=(\beta_n,\ldots,\beta_1)$ and $\beta_i=i-|\{h_k\mid h_k< i\}|.$

Graphical correspondence

Definition (Hessenberg diagrams)

Let $h = (h_1, \ldots, h_n)$ be a Hessenberg function.

- Draw an $n \times n$ square grid.
- ullet Shade h_i boxes in column i, starting from the top.
- Remove i-1 boxes in row i, starting from the right.

$$\beta_i$$
 is the number of shaded boxes in row i (starting from the bottom).

Example (n=6)

$$h = (3, 3, 4, 4, 5, 6)$$

$$\beta = (1, 1, 2, 3, 2, 1).$$

Truncated complete symmetric functions

Definition (Truncated complete symmetric function)

For $S \subseteq \{1, \ldots, n\}$ and d > 0,

$$\tilde{e}_d(S) := \sum_{\substack{\text{multisets} \\ \{i_1 \leqslant \ldots \leqslant i_d\} \subseteq S}} x_{i_1} \ldots x_{i_d}.$$

Example (n=4)

$$\tilde{e}_3(3,4) = x_3^3 + x_3^2 x_4 + x_3 x_4^2 + x_4^3$$

$$\tilde{e}_2(2,3,4) = x_2^2 + x_2 x_3 + x_2 x_4 + x_3^2 + x_3 x_4 + x_4^2$$

A few conventions:

- if d=0, then $\tilde{e}_d(S)=1$ for all S;
- ullet if d<0 and S
 eqarnothing, then $ilde{e}_d(S)=0.$

Ideals J_h

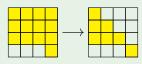
Let $h=(h_1,\ldots,h_n)$ be a Hessenberg function and $\beta=(\beta_n,\ldots,\beta_1)$ the corresponding degree tuple.

Definition (Hessenberg basis ideal)

$$J_h := (\tilde{e}_{\beta_n}(n), \tilde{e}_{\beta_{n-1}}(n-1, n), \dots, \tilde{e}_{\beta_1}(1, \dots, n)) \subseteq \mathbb{Q}[x_1, \dots, x_n].$$

Example (n=4)

Let h = (3, 3, 3, 4), then $\beta = (1, 3, 2, 1)$.



$$J_h = (\tilde{e}_1(4), \tilde{e}_3(3, 4), \tilde{e}_2(2, 3, 4), \tilde{e}_1(1, 2, 3, 4)) =$$

$$= (x_4, x_3^3 + x_3^2 x_4 + x_3 x_4^2 + x_4^3, x_2^2 + x_2 x_3 + x_2 x_4 + x_3^2 + x_3 x_4 + x_4^2,$$

$$x_1 + x_2 + x_3 + x_4).$$

Poset on degree tuples and ideals J_h

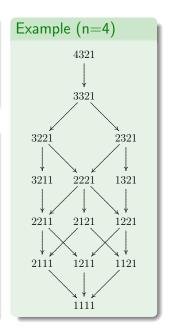
Definition

Let $\beta = (\beta_n, \dots, \beta_1)$ and $\beta' = (\beta'_n, \dots, \beta'_1)$ be degree tuples.

$$\beta \geqslant \beta' \iff \beta_i \geqslant \beta_i', \ \forall i.$$

Facts

- The Hasse diagram for the partial order on degree tuples is the same as the one for Hesseberg functions.
- The bijection *F* between Hessenberg functions and degree tuples preserves the partial orders.
- If β, β' are degree tuples corresponding to the Hessenberg functions h, h' and $\beta > \beta'$, then $J_h \subset J_{h'}$.



Review of Groebner bases

For $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$, set $\mathbf{x}^{\alpha} := x_1^{\alpha_1} \dots x_n^{\alpha_n} \in R = \mathbb{Q}[x_1, \dots, x_n]$. Monomials in R are totally ordered lexicographically.

Definition

Suppose $f \in R$. Then $f = \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} \mathbf{x}^{\alpha}$.

• (Leading monomial) $LM(f) = \max_{\alpha \in \mathbb{N}^n} \{\mathbf{x}^{\alpha} \mid c_{\alpha} \neq 0\}$.

- (Leading coefficient) $LC(f) = \max_{\alpha \in \mathbb{N}^n} \{c_\alpha \mid c_\alpha \neq 0\}.$
- (Leading coefficient) $LC(f) = \max_{\alpha \in \mathbb{N}^n} \{c_\alpha \mid c_\alpha \neq 0\}$ • (Leading term) LT(f) = LC(f)LM(f).
- Let $I \subseteq R$ be an ideal.

Definition (Leading term ideal)

$$(LT(I)) := (\{LT(f) \mid f \in I\}).$$

Definition (Groebner basis)

The set $\{g_1, \ldots, g_t\} \subset R$ is a *Groebner basis* of I if $(LT(I)) = (LT(g_1), \ldots, LT(g_t)).$

Groebner basis of J_h

Proposition

Let $I = (g_1, \ldots, g_t) \subseteq R$. If, for every $i, j \in \{1, \ldots, t\}$ with $i \neq j$, $lcm(LM(q_i), LM(q_i)) = LM(q_i)LM(q_i),$

then $\{g_1, \ldots, g_t\}$ is a Groebner basis of I.

Corollary

The generators of J_h form a Groebner basis of J_h (with respect to the lexicographic monomial order).

Sketch of proof.

Let $\beta = (\beta_n, \dots, \beta_1)$ be the degree tuple corresponding to h.

For $i \in \{1, \ldots, n\}$, set $f_i := \tilde{e}_{\beta_i}(i, \ldots, n)$, so that $J_h = (f_1, \ldots, f_n)$.

Observe that $LM(f_i) = x_i^{\beta_i}$. Then, for $i \neq j$, $\operatorname{lcm}(LM(f_i), LM(f_j)) = \operatorname{lcm}(x_i^{\beta_i}, x_i^{\beta_j}) = x_i^{\beta_i} x_i^{\beta_j} = LM(f_i) LM(f_j). \quad \Box$

$$\operatorname{cm}(x_i^{\beta_i}, x_j^{\beta_j}) = x_i^{\beta_i} x_j^{\beta_j} = LM(f_i) LM(f_j). \quad \Box$$

A monomial basis of R/J_h

Proposition (Macaulay's Basis theorem)

Suppose $\{g_1, \ldots, g_t\}$ is a Groebner basis of I. Then $\{\mathbf{x}^{\alpha} \mid \forall i, \ LM(g_i) \nmid \mathbf{x}^{\alpha}\}$

is a \mathbb{Q} -basis of R/I.

Theorem

Let h be a Hessenberg function and $\beta=(\beta_n,\dots,\beta_1)$ the corresponding degree tuple. Then R/J_h has basis

 $\mathcal{B}_h := \{x_1^{\alpha_1} \dots x_n^{\alpha_n} \mid 0 \leqslant \alpha_i \leqslant \beta_i - 1, \ \forall i \in \{1, \dots, n\}\}.$

In particular, $\dim_{\mathbb{Q}} R/J_h = \prod_{i=1}^n \beta_i$.

Sketch of proof.

The generators f_1, \ldots, f_n of J_h form a Groebner basis.

 $LM(f_i) = x_i^{\beta_i} \nmid x_1^{\alpha_1} \dots x_n^{\alpha_n} \Rightarrow \alpha_i \leqslant \beta_i - 1.$

Main theorem

Theorem (Mbirika, Tymoczko)

For any Hessenberg function h, $I_h = J_h$.

Sketch of proof.

- Prove $I_h = J_h$ when $h = (n, \dots, n)$.
 - Prove

$$e_d(1,\ldots,r) \in I_h \iff \tilde{e}_d(r+1,\ldots,n) \in I_h,$$

 $\tilde{e}_d(r+1,\ldots,n) \in J_h \iff e_d(1,\ldots,r) \in J_h.$

- Prove $I_h^{AD} \subseteq J_h$.
- Prove $J_h \subseteq I_h$.

(h,μ) -fillings

Let μ be any partition of n.

Definition $((h, \mu)$ -filling)

A filling of the Young diagram of μ with the numbers $1,\dots,n$ is called an (h,μ) -filling if it satisfies the following rule:

$$k \mid j$$
 is allowed only if $k \leqslant h_j$.

Examples
$$(n = 3, \mu = (2, 1))$$

ullet For h=(3,3,3), the (h,μ) -fillings are:

 \bullet For h=(2,3,3), the (h,μ) -fillings are:

1 2	2 13	3 2 3	2 1	3 2
3	2	1	3	1

Dimension pairs

Let $h = (h_1, \dots, h_n)$ be a Hessenberg function and μ a partition of n.

Definition (Dimension pair)

The pair (a,b) of entries of an (h,μ) -filling T is a dimension pair if:

- **1** b > a;
- ② b is below a and in the same column or b is in any column strictly to the left of a;
- **3** if a box with filling c is adjacent and to the right of a, then $b \leqslant h_c$.

Examples
$$(n = 3, h = (2, 3, 3), \mu = (2, 1))$$

- (12) \checkmark since $2 \le h_3 = 3$ (12) \checkmark (13) \checkmark
- (23) **X** since $3 > h_1 = 2$

The cohomology of $\mathfrak{H}(X,h)$

Theorem (Tymoczko)

Let $X \in \mathfrak{N}(\mu)$.

- If $i \in \mathbb{N}$ is odd, then $H^i(\mathfrak{H}(X,h)) = 0$.
- The dimension of $H^{2k}(\mathfrak{H}(X,h))$ is the number of (h,μ) -fillings T such that T has k dimension pairs.

Example
$$(n = 3, h = (2, 3, 3), \mu = (2, 1))$$

$(h,\mu)\text{-filling}$	1 2 3	1 3	2 3	2 1 3	3 2
dimension pairs	(1,3), (2,3)	(1,2)	Ø	(1,2), (1,3)	(2,3)

The Poincaré polynomial of $H^*(\mathfrak{H}(X,h))$ collects the information on the Betti numbers of $\mathfrak{H}(X,h)$:

$$P(t) = 1 + 2t^2 + 2t^4.$$

A map from (h, μ) -fillings to monomials

Fix a Hessenberg function $h = (h_1, ..., h_n)$ and a partition μ of n. If T is an (h, μ) -filling, denote by DP^T the set of dimension pairs of T.

Definition

$$\Phi \colon \{(h,\mu) - \mathsf{fillings}\} \longrightarrow R = \mathbb{Q}[x_1,\dots,x_n]$$

$$T \longmapsto \prod_{(i,j) \in \mathrm{DP}^T} x_j$$

Denote by $\mathcal{A}_h(\mu)$ the image of Φ .

 $\mathcal{A}_h(\mu) = \{1, x_2, x_3, x_2 x_3, x_3^2\}.$

A map from (h, μ) -fillings to monomials

Let $M^{h,\mu}$ be the \mathbb{Q} -vector space with basis $\{(h,\mu)-\text{fillings}\}$. Assume $\mu=(n)$. Recall R/J_h has basis

$$\mathcal{B}_h = \{x_1^{\alpha_1} \dots x_n^{\alpha_n} \mid 0 \leqslant \alpha_i \leqslant \beta_i - 1, \ \forall i \in \{1, \dots, n\}\},\$$

where $\beta = (\beta_n, \dots, \beta_1)$ is the degree tuple corresponding to h.

Theorem (Mbirika)

For $\mu=(n)$, we have $\mathcal{A}_h(\mu)=\mathcal{B}_h$. In particular, the map Φ extends to an isomorphism of \mathbb{Q} -vector spaces:

$$M^{h,\mu} \stackrel{\cong}{\longleftrightarrow} R/J_h.$$

This map is graded in the sense that it sends an (h,μ) -filling with k-dimension pairs to a monomial of degree k.

A similar result holds for $h=(1,\ldots,n)$ and any μ , i.e. in the case of Springer varieties. In this case $\mathcal{A}_h(\mu)$ is the Garsia-Procesi basis of R_μ .

One last example

Example
$$(n = 4, h = (3, 3, 3, 4), \beta = (1, 3, 2, 1), \mu = (4))$$

By definition, $I_h = (e_3(1,2,3), e_2(1,2,3), e_1(1,2,3), e_4, e_3, e_2, e_1).$ We have established that

$$I_h = I_h^{AD} = (e_3(1,2,3), e_2(1,2,3), e_1(1,2,3), e_1),$$

 $I_h = J_h = (\tilde{e}_1(4), \tilde{e}_3(3,4), \tilde{e}_2(2,3,4), \tilde{e}_1(1,2,3,4)).$

The quotient $R/I_h = R/J_h$ has basis $\mathcal{B}_h = \{1, x_2, x_3, x_2x_3, x_3^2, x_2x_3^2\}$.

We can produce the same basis by listing all (h,μ) -fillings, finding their dimension pairs and constructing the corresponding monomials:

1 2 3 4	2 1 3 4	1324	2 3 1 4	3 1 2 4	3 2 1 4
Ø	(12)	(23)	(12), (13)	(13), (23)	(12), (13), (23)
1	x_2	x_3	$x_{2}x_{3}$	x_{3}^{2}	$x_2x_3^2$

We can use R/I_h to recover the Betti numbers of $\mathfrak{H}(X,h)$.

Open questions

- Can we simultaneously generalize the Tanisaki ideal I_{μ} and the ideals I_h to a two-parameter family $I_{h,\mu}$, whose quotient $\mathbb{Q}[x_1,\ldots,x_n]/I_{h,\mu}$ is the cohomology ring of the Hessenberg variety for μ and h?
- Is there a ring isomorphism between $\mathbb{Q}[x_1,\ldots,x_n]/I_h$ and the cohomology of the regular nilpotent Hessenberg varieties (with rational coefficients)?
- In defining the antidiagonal ideal I_h^{AD} , we construct a reduced generating set for the ideal I_h . Is this reduced generating set minimal?
- The map $\Phi\colon\{(h,\mu)-\text{fillings}\}\to\mathcal{A}_h(\mu)$ admits an inverse when we fix $h=(1,\dots,n)$ and let μ vary, and when we fix $\mu=(n)$ and let h vary. Is there an inverse map that incorporates both h and μ ?

References

- Mbirika A. A Hessenberg generalization of the Garsia-Procesi basis for the cohomology ring of Springer varieties, (2010)
- Mbirika A., Tymoczko J. Generalizing Tanisaki's ideal via ideals of truncated symmetric functions, (2010)
- Tymoczko J. Linear conditions imposed on flag varieties, (2004)