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Tanisaki ideals

Let n € Z4 and p = (p1, ..., pn) a partition of n.

Let 9(u) be the set of nilpotent matrices in Mat,(C) whose Jordan
canonical form has blocks of size p1,.. ., tin.

De Concini and Procesi (1981) defined the ideal in Q[z1,...,x,] of the

schematic intersection 91(x) N Diagy(C).

Tanisaki (1982) simplified the construction of this ideal, now called (by
some) Tanisaki ideal 1,,.

Garsia and Procesi (1992) described some properties of the quotient ring
R, = Qlx1,...,zp]/1,

and gave a combinatorial rule to construct a monomial basis of R,,.



Springer varieties
Let § be the full flag variety

§={ViC...CV,=C"|Vi, dimV; =1},
Definition (Springer variety)
For X € M(u), define the Springer variety

Sx ={{ViC...CV,} €§|Vi, XV; CV;}.

If Y = A1 X A for some A € GL,(C), then &y = &y (so we could
replace the index X by the partition u).

The cohomology ring H*(S x) carries a symmetric group action. This
action was discovered by Springer (1976) and later described by De
Concini and Procesi.

In particular, H*(6x) = R,,.



Hessenberg varieties

Definition (Hessenberg function)

An n-tuple h = (h1,...,hy,) is a Hessenberg function if
e i< h;<n,Vie{l,...,n},
o hi <hipr,Vie{l,...,n—1}.

Example (n = 6)
h=(23,3,5,5,6).

Definition (Nilpotent Hessenberg variety)
Let X € Mat,(C), X nilpotent.

HXh) ={{ViC...CV,} €F|Vi XV; CVj,,}.

Examples
e Forh=(n,...,n), H(X,h)=73.
e Forh=(1,...,n), H(X,h) = Sx.




Generalizing I,

Can we generalize I, to an ideal I, 5, of Q[x1,...,z,] such that
H*(H(X, 1) = Qlz1,... 0]/ Lyn?

Recent work by Mbirika and Tymoczko suggests this is possible at least for
regular nilpotent Hessenberg varieties, corresponding to = (n).

The case . = (n) corresponds to a matrix X with a single Jordan block.
For most of this talk we fix © = (n), so p will be suppressed in the
notation unless needed.

| present the construction and some properties of the generalized ideal I},.
After recalling what is known about H*($(X,h)), | will show how it is
related to Q[x1,...,zy]/I}.



Truncated elementary symmetric functions

Definition (Truncated elementary symmetric function)
For SC{1,...,n} and d > 0,

Gd(S) = Z Liy - o Tjy-

{i1<..<iq}CS

Example (n = 4)

62(1, 2) = T1T2
e2(1,2,3) = 122 + z123 + T223

A few conventions:
e if d =0, then ¢4(S) =1 for all S;
e if d<0and S # g, then ¢4(S) = 0;
e if d >|S|, then e4(S) = 0.



h-Ferrer diagrams
Definition (h-Ferrer diagram)

Let h = (hq,...,hy) be a Hessenberg function.

@ Draw the diagram of the staircase partition (1,...,n) flush right and
bottom.

@ Fill the bottom row with the numbers A, ..., h, from left to right.

@ Fill each columns with decreasing entries from bottom to top.

Example (n = 6)
h=(23,3,5,5,6)
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Ideals I},

For a Hessenberg function h = (hy,. .., hy,), introduce the set
n
¢ = J{en—r(1,.. . he) [0<r <i— 1},
i=1

The element ey, (1,...,h;) in €, corresponds to the box in the i-th
column and (r + 1)-st row of the h-Ferrer diagram.

Example (n = 4)
h=(3,3,3,4)

O
O
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Q:h = {63(17 27 3)762(17 27 3)761(17 27 3)7 €4, €3, €2, 61}-




Ideals I},

Definition (Generalized Tanisaki ideal)

I = (&) C Q[z1, ..., 2.

A few observations: -
e forall h, €, D {e1,...,en}; ;

e if h=(n,...,n), then €, = (e1,...,en); 1]

2

e if h=(1,...,n), then —

1

@ 2 (e1(1),ea(1,2),.. ea(L,.o ) i1

[1]2] [n

so I, = (x1,...,2p).



Poset on Hessenberg functions

Example (n=4)

4444
Definition l
Let h = (h1,...,hy) and B/ = (h), ..., h]) 3444
be Hessenberg functions.
h>h hi > W, Vi, 2444 3344
We say h > h' are adjacent if there is an 1444 2344 3334
edge connecting them in the Hasse diagram /l
on Hessenberg functions, i.e. 1344 2244 9334
° hy, = hj, + 1, for some io;
© hiy = hj,, for all i # io. 1244 1334 2234

TN\

1234




Poset on ideals I},

Theorem
If h > A/, then I, C Ij.

Sketch of proof.

Enough to consider h > h’ adjacent, so h;, = hj + 1 for some i and

hi = k! for all i # iy. Equivalently, the h- and h/-Ferrer diagrams are
identical except in column ig.

Need to show: the generators €hi0—r(1, ooy hig) €€, for 0 < r <igp— 1,
also lie in I;.

ehiO*T(L""h’iO) =ep - r( h, —|—1)
=$h20+1 ehgo—'r(lv'” hzo)+eh' +1— r( h/ )
Sy el




Poset on ideals I},
It is not true in general that €, C &/, when h > K/, even if they are
adjacent.

Example (n = 4)

h = (3,4,4,4), Ch = {63(1,2,3) = 1'11‘21}3,61,62,63,64}
B =(2,4,4,4), €y = {e2(1,2) = x122,€1,€2,€3,€4}

Lemma
Suppose h > h' are adjacent with h;, = hi + 1. If h;, = hj for some
k > ig, then & C .

Example (n = 4)

h=(2,3,3,4),
Q:h - {62(17 2)7 61(17 27 3)7 62(17 27 3)7 63(17 27 3)7 €1, €2, €3, 64}
o= (2,2,3,4),

Q:h’ = {61(1’ 2)a 62(17 2)761(17 27 3)762(17 27 3)763(17 27 3)7617 €2, €3, 64}




Generator-containment sequences

Theorem

For each Hessenberg function h > (1,...,n),
there exists at least one adjacent function A’
with both A > h/ and €, C €.

Definition (Generator-containment sequence)

Let h = f1 >...> f. = h' be a sequence of
Hessenberg functions such that f; and f;11 are
adjacent. If &y, C &y, |, the sequence is a
generator-containment sequence from h to h'.

v

Corollary

Given a Hessenberg function h, there exists a
g.c.s. from h to (1,...,n). In particular, the
g.c.s.'s form a spanning subgraph of the Hasse
diagram on Hessenberg functions.

Example (n=4)
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Reduced generating set for I},
The generating set @, is often highly nonminimal.

Definition (Antidiagonal ideal)

1P = ({en—ir1(1, ..., he) | 1< i < m}).

PP
Theorem

AP =,

is ‘generated by antidiagonal boxes’ of the h-Ferrer diagram.

Sketch of proof.
IAD C I, so it's enough to show &, C AP,

Claim: ep,(1,...,h;) € I;*P (bottom row generators)
@ Fori=1,ep(1,...,h1) € I;:‘D by definition.

@ Fori>1,ep(1,...,h) =a1...2p;, = Thy41-..-Thep (L,...




Reduced generating set for I},
Sketch of proof (continued).

Claim: ep,—,(1,...,h;) € I{*P (i-th column generators)

e 1P

@ For ¢ =2, clear.
@ For i > 2 and h;y1 = h;, the (i + 1)-st and i-th column coincide.
@ Fori>2and hjy1 > h;, forall s € {1,...,i— 1}
hit1—h;
€h¢+1—8(1: naag hi+1) = Z et(hi +1,..., hi+1)ehi+1—s—t(17 soog hz)
t=0
and t < h;11 — h; implies h;11 —s —t > h; — s so the right hand side
lies in I;AD. O

v




Degree tuples
Definition (Degree tuple)
An n—tuple B = (Bn,--.,P1) is a degree tuple if
<Bi<iq, Vie{l,...,n},
oﬁl Bi—1 < 1Vz€{2 ,m}.

Example (n = 6)
B8=1(1,21,22,1).

Proposition
There is a bijective correspondence

{Hessenberg functions} PN {degree tuples}.

For h = (h1,...,hy), we have 8 = F(h), where 8 = (8,,...,1) and
Bi=1— [{hg | hi <i}|.



Graphical correspondence

Definition (Hessenberg diagrams)
Let h = (hq,...,hy) be a Hessenberg function.
@ Draw an n X n square grid.
@ Shade h; boxes in column 4, starting from the top.

@ Remove i — 1 boxes in row ¢, starting from the right.

Bi is the number of shaded boxes in row i (starting from the bottom).
Example (n = 6)
h=(3,3,4,4,5,6)

8=1(1,1,23,2,1).




Truncated complete symmetric functions

Definition (Truncated complete symmetric function)
For S C {1,...,n}and d >0,

éd(S) = E Ly« Ty
multisets
{i1<...<94}CS

Example (n = 4)

é3(3, 4) = l‘g + $§IL‘4 + xgxi + Ii

€2(2,3,4) = x% + 2ox3 + T274 + :c% + 2324 + xi

A few conventions:
e if d =0, then ¢4(S) =1 for all S;
e if d<0and S # g, then €4(S) = 0.



Ideals .J},

Let h = (hq,...,hy) be a Hessenberg function and 5 = (f,,..., 1) the
corresponding degree tuple.

Definition (Hessenberg basis ideal)

Jp = (ég,(n), €5, ,(n—1,n),...,€g(1,...,n)) CQz1,...,2y).

Example (n = 4)
Let h = (3,3,3,4), then 8 = (1,3,2,1).

—

Tn = (21(4), 83(3, 4), é2(2, 3, 4), &1(1, 2, 3, 4)) =
= (4,23 + 2324 + T3] + T3, T3 + ToT3 + ToTa + T3 + T334 + T3,
T+ 2o + a3 + l’4).




Poset on degree tuples and ideals J

Definition

Let/B:(/an'wBl) and /8,:( 4177183)

be degree tuples.

B=p = B =8, Vi

Facts

@ The Hasse diagram for the partial order
on degree tuples is the same as the one
for Hesseberg functions.

@ The bijection F' between Hessenberg
functions and degree tuples preserves
the partial orders.

o If 3,3 are degree tuples corresponding
to the Hessenberg functions h, h’ and
B > 6,, then Jh C Jh’-

Example (n=4)
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Review of Groebner bases

For @ = (a1,...,ay) € N, set x* := 2" ... 29" € R = Q[zy,...

Monomials in R are totally ordered lexicographically.

Definition

Suppose f € R. Then f =3 yncaX®.
o (Leading monomial) LM (f) = maxaenn{x* | cq # 0}.
o (Leading coefficient) LC(f) = maxqenn{ca | ca 7# 0}.
o (Leading term) LT(f) = LC(f)LM(f).

Let I C R be an ideal.
Definition (Leading term ideal)

(LT(I)) := ({LT(f) | f € I}).

Definition (Groebner basis)

The set {g1,...,9:} C R is a Groebner basis of I if
(LT(I)) = (LT(g1),-- -, LT(gt))-




Groebner basis of J,

Proposition

Let I = (g1,...,9¢) € R. If, for every i,5 € {1,...,t} with i # j,
lem (LM (g:), LM (g;)) = LM (g:) LM (g;),

then {g1,...,g:} is a Groebner basis of I.

Corollary

The generators of Jj, form a Groebner basis of J;, (with respect to the
lexicographic monomial order).

Sketch of proof.

Let 5 = (Bn,-.., 1) be the degree tuple corresponding to h.
Foric {1,...,n}, set f; :=ég,(i,...,n), so that J, = (f1,..., fn).
Observe that LM (f;) = xf’ Then, for i # j,

lem(LM (f;), LM(f;)) = lem(z}", &) = aa’ = LM(f;)LM(f)).

Ol

v




A monomial basis of R/.J;,

Proposition (Macaulay's Basis theorem)

Suppose {g1,...,g:} is a Groebner basis of I. Then
{x* [ Vi, LM(g;) t x"}
is a Q-basis of R/I.

Theorem

Let h be a Hessenberg function and 5 = (53, ..., 31) the corresponding
degree tuple. Then R/J;, has basis

By, :Z{x?l...l%” logaigﬂi—l, ViE{l,...,n}}.

In particular, dimg R/J;, =[]}, Bi.

Sketch of proof.

The generators f1, ..., f, of J, form a Groebner basis.
LM(f;) =aP ta® . 2% = 0; < i — 1.




Main theorem

Theorem (Mbirika, Tymoczko)
For any Hessenberg function h, I, = Jp.

Sketch of proof.

@ Prove I, = J, when h = (n,.
@ Prove

.,n).

eq(l,...,r) €l < éq(r+1,...,n) € I,
éa(r+1,....,n) €, < eq(l,...,7r) € Jp.
@ Prove I,’?Dth.
@ Prove J;, C Iy,




(h, p)-fillings

Let i be any partition of n.
Definition ((h, p)-filling)

A filling of the Young diagram of u with the numbers 1,... n is called an
(h, p)-filling if it satisfies the following rule:

is allowed only if k < h;.

Examples (n =3, = (2,1))
e For h = (3,3,3), the (h, p)-fillings are:

1]2] 1]3] 2[3] 2[1] 3[1] 3[2]
13] 2 1 3 2 1

e For h = (2,3,3), the (h, u)-fillings are:

1]2] 1[3] 2[3] 2]1] 3]2]
13] 2 1 3 1




Dimension pairs
Let o = (hq,...,hy) be a Hessenberg function and p a partition of n.
Definition (Dimension pair)

The pair (a,b) of entries of an (h, u)-filling T is a dimension pair if:
Q b>a;

© b is below a and in the same column or b is in any column strictly to
the left of a;

© if a box with filling ¢ is adjacent and to the right of a, then b < h,.

Examples (n =3,h = (2,3,3),u = (2,1))
[1]3] 2[1]
2] 13/
(12) v/ since 2 < hg =3 (12) v
(13) X (13) v

(23) x (23) X since 3 > h; =2

v




The cohomology of H(X, h)

Theorem (Tymoczko)
Let X € M(p).
e If i € N is odd, then H!($(X,h)) = 0.

o The dimension of H?¥($(X,h)) is the number of (h, u)-fillings T
such that 7" has k£ dimension pairs.

Example (n =3,h = (2,3,3), 0 = (2,1))
(h, p)-filling ‘ 1[2]

1]
dimension pairs | (1,3), (2,3) | (1,2) | & | (1,2), (1,3) | (2,3)

3[‘ 23[‘

1] ‘ :1321

[co]oo

1
2]

The Poincaré polynomial of H*($)(X, h)) collects the information on the
Betti numbers of (X, h):

P(t) =1+ 2% + 2¢*.




A map from (h, u)-fillings to monomials
Fix a Hessenberg function h = (h1,...,h,) and a partition p of n.
If T is an (h, p)-filling, denote by DPT the set of dimension pairs of 7.

Definition
O: {(h,p) —fillings} — R = Q[z1,...,Zs]

T+— H Zj
(i,5)eDPT
Denote by Ap () the image of ®.

Example (n =3,h = (2,3,3), 0 = (2,1))

(h, p)-filling 2 e B e
dimension pairs | (1,3), (2,3) | (1,2) | @ | (1,2), (1,3) | (2,3)
monomial x% 9 1 Tox3 T3

An(p) = {1, 29, x3, T223, 73}




A map from (h, u)-fillings to monomials

Let M"™* be the Q-vector space with basis {(h, 1) — fillings}.
Assume p = (n). Recall R/J}, has basis

By ={x{ ... 25" |0<a; < B — 1, Vie{l,...,n}},
1 n

where 8 = (B, ..., 1) is the degree tuple corresponding to h.

Theorem (Mbirika)

For = (n), we have Ay(u) = By In particular, the map ® extends to an
isomorphism of Q-vector spaces:

MM =5 R/ Jp.

This map is graded in the sense that it sends an (h, p)-filling with
k-dimension pairs to a monomial of degree k.

A similar result holds for h = (1,...,n) and any g, i.e. in the case of
Springer varieties. In this case Ay (1) is the Garsia-Procesi basis of R,,.



One last example
Example (TL = 47 h = (3737374>7ﬂ = (1737 27 1)7:“ = (4))

By definition, I, = (e3(1,2,3),e2(1,2,3),e1(1,2,3), eq, €3, €2, €1).
We have established that

I = TP = (e3(1,2,3),e2(1,2,3),e1(1,2,3), e1),
I, = J, = (61(4), 83(3,4),62(2,3,4),61(1,2,3,4)).

The quotient R/I;, = R/J}, has basis By, = {1, 22, 3, 1273, 23, z2023}.

We can produce the same basis by listing all (h, u)-fillings, finding their
dimension pairs and constructing the corresponding monomials:

(1]2[3]4] | [2[1[3]4] | [1[3]2]4] | [2[3[1[4] | [3]1[2]4]
%] (12) (23) (12), (13) | (13), (23) | (12), (13), (23)
1 9 T3 ToXxs3 x% l‘Q(E%

We can use R/I}, to recover the Betti numbers of $(X,h).




Open questions

@ Can we simultaneously generalize the Tanisaki ideal I, and the ideals
I, to a two-parameter family Ij, ,, whose quotient Q[z1, ..., zp|/Ih
is the cohomology ring of the Hessenberg variety for  and h?

@ Is there a ring isomorphism between Q[z1,...,x,]/I} and the
cohomology of the regular nilpotent Hessenberg varieties (with
rational coefficients)?

@ In defining the antidiagonal ideal I}f‘D, we construct a reduced
generating set for the ideal Ij. Is this reduced generating set minimal?

@ The map ®: {(h, u) — fillings} — Ap (1) admits an inverse when we
fix h = (1,...,n) and let u vary, and when we fix © = (n) and let h
vary. Is there an inverse map that incorporates both i and u?
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