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Representations with finitely many orbits

@ (G complex linearly reductive group;
o V irreducible representation of G.

The pairs (G, V) such that the action G C V has finitely many
orbits were classified by V. Kac.

e GL,(C) x GL,,(C) & Hom(C"™,C™);

e orbits: O, = {¢ : C" — C™ | 1k(p) = r}
i.e. matrices of given rank;

e orbit closures: O, = {p : C" — C™ | tk(p) < 7}
i.e. determinantal varieties.
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Representation of a pair (X, ay)

Theorem (Kac)

(Xn, ax) Dynkin diagram with a distinguished node gives:
® g = P,z 0i, grading on the simple Lie algebra of type X,;
e Gy, group of the Lie subalgebra gy (has diagram X, \ay).
The action Gy C g; has finitely many orbits.

Example (Antn—1,m)

m
C o ............ C C C

e Gy = C* x SL,(C) x SL,,(C)
e g; = Hom(C",C™)
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Representation of a pair (X, ay)

Example (Cm a?l)

e Gy =C* x SL,(C)
@ g1 = Symy(C")

Example (D, ay,)
@ Gop=C* x SLn<(C)
o g1 = A*(C)

Example ((E,, a2) for n = 6,7,8)

o Go = C* x SLn(C)
o g1 = A*(C")

Federico Galetto Queen'’s University

Free resolutions and representations with finitely many orbits 4 /20



Enumerating the orbits

Let e € g1 be nilpotent in g, and C(e) be its conjugacy class in g.
We have a decomposition into irreducible components:

C(e) Ngr = Cl<6) U... U Cn(e)(e)

Theorem (Vinberg)

The orbits of Gy C g; are the irreducible components C;(e), for
all choices of conjugacy classes C'(e) and all 7, 1 <i < n(e).

Theorem (Vinberg)
The orbits of Gog C g1 correspond to some graded subalgebras of g.

The second result gives a recipe to enumerate all the orbits.
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A wish list for the orbit closures

e GyCgr=0gu...u0;
o g1 = AZ (complex affine space);

e OC A affine algebraic variety.

Understand properties of the orbit closures O.
@ Defining equations
e Containment
@ Singular loci
@ Cohen-Macaulay
@ Gorenstein
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Minimal free resolutions

e A = C[A"] is a polynomial ring,

e C[O] = A/I, for some homogeneous ideal I < A.

We can achieve the goal by studying the minimal free resolution

dy dn
.7:.1 FO F1 Fn,1 Fn 0

of C[O] as a graded A-module.

Moreover F, is Gp-equivariant, so
Fy = @,ez Uj ®c A(—J),

for some representations U; of Gj.
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A bit of history

For the Lie algebras of classical type:
@ Lascoux (1978), determinantal varieties (Ay,);

e Jézefiak, Pragacz, Weyman (1981), minors of symmetric and
antisymmetric matrices;

e Lovett (2007), rank varieties (By,, Cy, D).

For the Lie algebras of exceptional type:
o Kraskiewicz, Weyman (2011), Eg, Fy and G;
e Kraskiewicz, Weyman (2013), Ex.

In some cases, Kraskiewicz and Weyman only give the “expected
resolution” of C[N(O)], the coordinate ring of the normalization
of the orbit closure.
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(E7, an): the representation

1 3 4 5 6 7
O O O O O O

@
ro

° g(EB7) =g 2@g 1D Dg1 Do
o go = Cdsl7(C)

o Gy = C* x SLy(C)

o g1 = N*CT
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(E7, an): the orbits

The action C* x SL7(C) & A’ C7 has 10 orbits:
o Oy, the dense orbit i.e. Oy = A*C7;

Og, with Og the hyperdiscrimant hypersurface;

O, with O7 = Sing(Og) = a3(01);

01, the orbit of the highest weight vector with
01 = Cone(Gr(3,7));

Op, the origin.
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(E7, an): the expected resolution for C

° A:Sym(/\gc7):(c[$ijk|1<i<j<k<7].

e Expected resolution of C[Ox]:
Sor)C" ® A « S(31.93)C7 @ A(—6) — S(4352)C’ ® A(=7) «
— S(52.45)CT ® A(—10) « S(556)CT @ A(—12) < 0

where Sy is the Schur functor associated to the partition A.
@ The Betti table:

0 3 4

total: 1 3548 21 7

o 1 . . .

1 .

2:

3: .

4: . .

5: .3548 . .

6: . . . ..

7: .21 .

8: LT
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dy : 8(473572)((:7 RA(-T7) — 8(34723)67 ® A(—6)
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Constructing the complex

@ Write an equivariant differential d; explicitly in M2
e Compute syzygies of d; and d] with degree bounds

@ Splice the resulting complexes

d;
Fiq F; Te 0
T
0 Hae Ft,— F}
d;
Fo: He Fi 4 i Te 0

@ Does F, coincide with the expected resolution?

@ Is F, exact?
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Equivariant exactness criterion

Theorem (Buchsbaum-Eisenbud)
Feisexact < Vk=1,...,n
@ rk(Fy) = rk(dg) + rk(dk+1);

@ depth(I(dy)) = k, where I(dg) is the ideal of A generated by
the maximal non vanishing minors of dj.

Proposition (G.)

Feisexact < Vk=1,...,n
Q rk(Fy) = rk(dklp) + rk(dk+1]p) for p in the dense orbit;

@ rk(dy) drops at orbit closures of codimension at least k.
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(E7, ) the resolution of C[Or]

A A(=6)3 — A(=T7)*8 — A(~10)%! — A(-12)T <0

orbit codim(O;) | rk(d1) rk(da) rk(ds) rk(da)
O 35 0 0 0 0
O 22 0 13 0 0
Oy 15 0 20 0 1
O3 14 0 21 6 1
Oy 10 0 25 3 3
Os 9 0 26 6 6
Os 7 0 28 6 4
Oy 4 0 31 11 6
Os 1 1 34 14 7
Oy 0 1 34 14 7

o depth(I(dy)) =4 fork =1,2,3,4;
e O7 is Cohen-Macaulay.
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(E7, ap): containment and singular locus of O

The first differential d; contains equations for the orbit closure.

orbit | rk(dy) Using representatives of each orbit, we can:
Og 0 @ determine orbit containment,

01 0 by checking for vanishing of dy:

Oy 0 o

Os 0 Or=0qu...u07

Oy 0

05 0 @ determine singular locus,

Os 0 via the Jacobian criterion:

g; 2 Sing((’)7) = Oo U...uU OG.
Oy 1
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The coordinate ring

We have a minimal free resolution Fy — R = A/I, with V(I) = O.

Is R reduced? Equivalently, is I radical?

Proposition
A Noetherian ring R is reduced if and only if it satisfies the
conditions (Rp) and (.57).

Since O is irreducible, I has a unique minimal prime p = /1.
Then:

@ (S1) means I has no embedded primes;

e (Rp) means R, is regular.
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Reducedness criterion

dq dn
f.: FO F1 Fn—l Fn 0

F. is the minimal free resolution of R = A/I, with V(I) = O.

Proposition (G.)

Assume codim(O) = c.
o If depth(I(dy)) > k for all k > ¢, then R satisfies (.5).

@ Let J be the Jacobian matrix of I and z € O.
If rk(J|,) = ¢, then R satisfies (Rp).
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Non normal orbits

The interactive method gives the minimal free resolution

Fo — CIN(0)].

fo;)go

|

0 C[O] — CIN(0)] —/—— C —— 0

To present C:
@ take d; : I} — Fy;
@ observe Fy = A@ F{, with F{| generated in degree > 2;
e [} — Fy is a presentation of C.

To resolve C[O], take cone(7).
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State of the project

@ Eﬁ, F4 and G2
@ Results: http://arxiv.org/abs/1210.6410
@ M2 files for orbit closures, normalization and cokernels:

http://www.mast.queensu.ca/~galetto/orbits

@ FEr: Computationally intensive.

® =
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