Free resolutions and representations with finitely many orbits

Federico Galetto

Queen's University
September 9, 2013

Representations with finitely many orbits

- G complex linearly reductive group;
- V irreducible representation of G.

The pairs (G, V) such that the action $G \subset V$ has finitely many orbits were classified by V. Kac.

Example

- $\mathrm{GL}_{n}(\mathbb{C}) \times \mathrm{GL}_{m}(\mathbb{C}) \subset \operatorname{Hom}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$;
- orbits: $\mathcal{O}_{r}=\left\{\varphi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m} \mid \operatorname{rk}(\varphi)=r\right\}$
i.e. matrices of given rank;
- orbit closures: $\overline{\mathcal{O}}_{r}=\left\{\varphi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m} \mid \operatorname{rk}(\varphi) \leqslant r\right\}$
i.e. determinantal varieties.

Representation of a pair $\left(X_{n}, \alpha_{k}\right)$

Theorem (Kac)

(X_{n}, α_{k}) Dynkin diagram with a distinguished node gives:

- $\mathfrak{g}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_{i}$, grading on the simple Lie algebra of type X_{n};
- G_{0}, group of the Lie subalgebra \mathfrak{g}_{0} (has diagram $X_{n} \backslash \alpha_{k}$).

The action $G_{0} \subset \mathfrak{g}_{1}$ has finitely many orbits.
Example $\left(A_{m+n-1}, \alpha_{m}\right)$

> - $G_{0}=\mathbb{C}^{\times} \times \mathrm{SL}_{n}(\mathbb{C}) \times \mathrm{SL}_{m}(\mathbb{C})$
> - $\mathfrak{g}_{1}=\operatorname{Hom}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$

Representation of a pair $\left(X_{n}, \alpha_{k}\right)$

Example $\left(C_{n}, \alpha_{n}\right)$

- $G_{0}=\mathbb{C}^{\times} \times \mathrm{SL}_{n}(\mathbb{C})$
- $\mathfrak{g}_{1}=\operatorname{Sym}_{2}\left(\mathbb{C}^{n}\right)$

Example $\left(D_{n}, \alpha_{n}\right)$

- $G_{0}=\mathbb{C}^{\times} \times \mathrm{SL}_{n}(\mathbb{C})$
- $\mathfrak{g}_{1}=\bigwedge^{2}\left(\mathbb{C}^{n}\right)$

Example $\left(\left(E_{n}, \alpha_{2}\right)\right.$ for $\left.n=6,7,8\right)$

- $G_{0}=\mathbb{C}^{\times} \times \mathrm{SL}_{n}(\mathbb{C})$
- $\mathfrak{g}_{1}=\bigwedge^{3}\left(\mathbb{C}^{n}\right)$

Enumerating the orbits

Let $e \in \mathfrak{g}_{1}$ be nilpotent in \mathfrak{g}, and $C(e)$ be its conjugacy class in \mathfrak{g}. We have a decomposition into irreducible components:

$$
C(e) \cap \mathfrak{g}_{1}=C_{1}(e) \cup \ldots \cup C_{n(e)}(e)
$$

Theorem (Vinberg)

The orbits of $G_{0} \subset \mathfrak{g}_{1}$ are the irreducible components $C_{i}(e)$, for all choices of conjugacy classes $C(e)$ and all $i, 1 \leqslant i \leqslant n(e)$.

Theorem (Vinberg)

The orbits of $G_{0} \subset \mathfrak{g}_{1}$ correspond to some graded subalgebras of \mathfrak{g}.
The second result gives a recipe to enumerate all the orbits.

A wish list for the orbit closures

- $G_{0} \subset \mathfrak{g}_{1}=\mathcal{O}_{0} \cup \ldots \cup \mathcal{O}_{t}$;
- $\mathfrak{g}_{1}=\mathbb{A}_{\mathbb{C}}^{n}$ (complex affine space);
- $\overline{\mathcal{O}} \subseteq \mathbb{A}_{\mathbb{C}}^{n}$ affine algebraic variety.

Goal

Understand properties of the orbit closures $\overline{\mathcal{O}}$.

- Defining equations
- Containment
- Singular loci
- Cohen-Macaulay
- Gorenstein

Minimal free resolutions

- $A=\mathbb{C}\left[\mathbb{A}^{n}\right]$ is a polynomial ring,
- $\mathbb{C}[\overline{\mathcal{O}}]=A / I$, for some homogeneous ideal $I \subset A$.

We can achieve the goal by studying the minimal free resolution

$$
\mathcal{F}_{\bullet}: F_{0} \stackrel{d_{1}}{\longleftarrow} F_{1} \longleftarrow \ldots \longleftarrow F_{n-1} \stackrel{d_{n}}{\longleftarrow} F_{n} \longleftarrow 0
$$

of $\mathbb{C}[\overline{\mathcal{O}}]$ as a graded A-module.
Moreover \mathcal{F}_{\bullet} is G_{0}-equivariant, so

$$
F_{i}=\oplus_{j \in \mathbb{Z}} U_{j} \otimes_{\mathbb{C}} A(-j)
$$

for some representations U_{j} of G_{0}.

A bit of history

For the Lie algebras of classical type:

- Lascoux (1978), determinantal varieties $\left(A_{n}\right)$;
- Józefiak, Pragacz, Weyman (1981), minors of symmetric and antisymmetric matrices;
- Lovett (2007), rank varieties (B_{n}, C_{n}, D_{n}).

For the Lie algebras of exceptional type:

- Kraśkiewicz, Weyman (2011), E_{6}, F_{4} and G_{2};
- Kraśkiewicz, Weyman (2013), E_{7}.

In some cases, Kraśkiewicz and Weyman only give the "expected resolution" of $\mathbb{C}[\mathcal{N}(\overline{\mathcal{O}})]$, the coordinate ring of the normalization of the orbit closure.

$\left(E_{7}, \alpha_{2}\right):$ the representation

- $\mathfrak{g}\left(E_{7}\right)=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$
- $\mathfrak{g}_{0}=\mathbb{C} \oplus \mathfrak{s l}_{7}(\mathbb{C})$
- $G_{0}=\mathbb{C}^{\times} \times \mathrm{SL}_{7}(\mathbb{C})$
- $\mathfrak{g}_{1}=\bigwedge^{3} \mathbb{C}^{7}$

$\left(E_{7}, \alpha_{2}\right)$: the orbits

The action $\mathbb{C}^{\times} \times \mathrm{SL}_{7}(\mathbb{C}) \subset \bigwedge^{3} \mathbb{C}^{7}$ has 10 orbits:

- \mathcal{O}_{9}, the dense orbit i.e. $\overline{\mathcal{O}}_{9}=\bigwedge^{3} \mathbb{C}^{7}$;
- \mathcal{O}_{8}, with $\overline{\mathcal{O}}_{8}$ the hyperdiscrimant hypersurface;
- \mathcal{O}_{7}, with $\overline{\mathcal{O}}_{7}=\operatorname{Sing}\left(\overline{\mathcal{O}}_{8}\right)=\sigma_{3}\left(\overline{\mathcal{O}}_{1}\right)$;
- ...
- \mathcal{O}_{1}, the orbit of the highest weight vector with $\overline{\mathcal{O}}_{1}=\operatorname{Cone}(\operatorname{Gr}(3,7))$;
- \mathcal{O}_{0}, the origin.

$\left(E_{7}, \alpha_{2}\right)$: the expected resolution for $\mathbb{C}\left[\overline{\mathcal{O}}_{7}\right]$

- $A=\operatorname{Sym}\left(\bigwedge^{3} \mathbb{C}^{7}\right)=\mathbb{C}\left[x_{i j k} \mid 1 \leqslant i<j<k \leqslant 7\right]$.
- Expected resolution of $\mathbb{C}\left[\overline{\mathcal{O}}_{7}\right]$:

$$
\begin{aligned}
\mathbb{S}_{\left(0^{7}\right)} & \mathbb{C}^{7} \otimes A \leftarrow \mathbb{S}_{\left(3^{4}, 2^{3}\right)} \mathbb{C}^{7} \otimes A(-6) \leftarrow \mathbb{S}_{\left(4,3^{5}, 2\right)} \mathbb{C}^{7} \otimes A(-7) \leftarrow \\
& \leftarrow \mathbb{S}_{\left(5^{2}, 4^{5}\right)} \mathbb{C}^{7} \otimes A(-10) \leftarrow \mathbb{S}_{\left(6,5^{6}\right)} \mathbb{C}^{7} \otimes A(-12) \leftarrow 0
\end{aligned}
$$

where \mathbb{S}_{λ} is the Schur functor associated to the partition λ.

- The Betti table:

	0	1	2	3	4
total:	1	35	48	21	7
$0:$	1
$1:$
$2:$
$3:$
$4:$
$5:$.	35	48	.	.
$6:$
$7:$.	.	.	21	.
$8:$	7

$\left(E_{7}, 2\right)$: the differential for $\overline{\mathcal{O}}_{7}$

$$
\begin{aligned}
& d_{2}: \mathbb{S}_{\left(4,3^{5}, 2\right)} \mathbb{C}^{7} \otimes A(-7) \longrightarrow \mathbb{S}_{\left(3^{4}, 2^{3}\right)} \mathbb{C}^{7} \otimes A(-6) \\
& \left(\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & x_{167} & 0 & x_{267} & \cdots \\
0 & 0 & x_{167} & 0 & x_{267} & 0 & 0 & 0 & 0 & \cdots \\
x_{167} & 0 & 0 & 0 & 0 & x_{367} & 0 & 0 & 0 & \cdots \\
0 & x_{267} & 0 & x_{367} & 0 & 0 & 0 & x_{467} & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & -x_{157} & 0 & -x_{257} & \cdots \\
0 & 0 & -x_{157} & 0 & -x_{257} & 0 & 0 & 0 & 0 & \cdots \\
-x_{157} & 0 & 0 & 0 & 0 & -x_{357} & 0 & 0 & 0 & \cdots \\
0 & -x_{257} & 0 & -x_{357} & 0 & 0 & 0 & -x_{457} & 0 & \cdots \\
0 & 0 & x_{147} & 0 & x_{247} & 0 & x_{137} & 0 & x_{237} & \cdots \\
x_{147} & 0 & 0 & 0 & 0 & x_{347} & -x_{127} & 0 & 0 & \cdots \\
0 & x_{247} & 0 & x_{347} & 0 & 0 & 0 & 0 & -x_{127} & \cdots \\
-x_{137} & 0 & -x_{127} & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & -x_{237} & 0 & 0 & -x_{127} & 0 & 0 & x_{347} & 0 & \cdots \\
0 & 0 & 0 & -x_{237} & 0 & -x_{137} & 0 & -x_{247} & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & x_{156} & 0 & x_{256} & \cdots \\
0 & 0 & x_{156} & 0 & x_{256} & 0 & 0 & 0 & 0 & \cdots \\
x_{156} & 0 & 0 & 0 & 0 & x_{356} & 0 & 0 & 0 & \cdots \\
0 & x_{256} & 0 & x_{356} & 0 & 0 & 0 & x_{456} & 0 & \cdots \\
0 & 0 & -x_{146} & 0 & -x_{246} & 0 & -x_{136} & 0 & -x_{236} & \cdots \\
-x_{146} & 0 & 0 & 0 & 0 & -x_{346} & x_{126} & 0 & 0 & \cdots \\
0 & -x_{246} & 0 & -x_{346} & 0 & 0 & 0 & 0 & x_{126} & \cdots \\
x_{136} & 0 & x_{126} & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & x_{236} & 0 & 0 & x_{126} & 0 & 0 & -x_{346} & 0 & \cdots \\
0 & 0 & 0 & x_{236} & 0 & x_{136} & 0 & x_{246} & 0 & \cdots \\
\cdots & \cdots
\end{array}\right.
\end{aligned}
$$

Constructing the complex

- Write an equivariant differential d_{i} explicitly in M2
- Compute syzygies of d_{i} and d_{i}^{\top} with degree bounds
- Splice the resulting complexes

$$
\begin{array}{r}
\\
0 \longrightarrow \mathcal{H}_{\bullet} \longrightarrow F_{i-1}^{*} \stackrel{d_{i}}{d_{i}^{\top}} F_{i} \longleftarrow F_{i}^{*} \longleftarrow 0 \\
\mathcal{F}_{\bullet}: \quad \mathcal{H}_{\bullet}^{*} \longleftarrow F_{i-1} \longleftarrow{ }^{\frac{d_{i}}{\longleftrightarrow}} F_{i} \longleftarrow \mathcal{T}_{\bullet} \longleftarrow 0
\end{array}
$$

Questions

- Does \mathcal{F}_{\bullet} coincide with the expected resolution?
- Is \mathcal{F}_{\bullet} exact?

Equivariant exactness criterion

$$
\mathcal{F}_{\bullet}: F_{0} \stackrel{d_{1}}{\longleftarrow} F_{1} \longleftarrow \ldots \longleftarrow F_{n-1} \stackrel{d_{n}}{\longleftarrow} F_{n} \longleftarrow 0
$$

Theorem (Buchsbaum-Eisenbud)

$\mathcal{F}_{\mathbf{\bullet}}$ is exact $\Longleftrightarrow \forall k=1, \ldots, n$
(1) $\operatorname{rk}\left(F_{k}\right)=\operatorname{rk}\left(d_{k}\right)+\operatorname{rk}\left(d_{k+1}\right)$;
(2) depth $\left(I\left(d_{k}\right)\right) \geqslant k$, where $I\left(d_{k}\right)$ is the ideal of A generated by the maximal non vanishing minors of d_{k}.

Proposition (G.)

\mathcal{F}_{\bullet} is exact $\Longleftrightarrow \forall k=1, \ldots, n$
(1) $\operatorname{rk}\left(F_{k}\right)=\operatorname{rk}\left(\left.d_{k}\right|_{p}\right)+\operatorname{rk}\left(\left.d_{k+1}\right|_{p}\right)$ for p in the dense orbit;
(2) $\mathrm{rk}\left(d_{k}\right)$ drops at orbit closures of codimension at least k.

$\left(E_{7}, \alpha_{2}\right)$: the resolution of $\mathbb{C}\left[\overline{\mathcal{O}}_{7}\right]$

| $A \leftarrow A(-6)^{35} \leftarrow A(-7)^{48} \leftarrow A(-10)^{21} \leftarrow A(-12)^{7} \leftarrow 0$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\leftarrow 0$ | | | | | |
| orbit | $\operatorname{codim}\left(\overline{\mathcal{O}}_{i}\right)$ | $\operatorname{rk}\left(d_{1}\right)$ | $\operatorname{rk}\left(d_{2}\right)$ | $\operatorname{rk}\left(d_{3}\right)$ | $\operatorname{rk}\left(d_{4}\right)$ |
| \mathcal{O}_{0} | 35 | 0 | 0 | 0 | 0 |
| \mathcal{O}_{1} | 22 | 0 | 13 | 0 | 0 |
| \mathcal{O}_{2} | 15 | 0 | 20 | 0 | 1 |
| \mathcal{O}_{3} | 14 | 0 | 21 | 6 | 1 |
| \mathcal{O}_{4} | 10 | 0 | 25 | 3 | 3 |
| \mathcal{O}_{5} | 9 | 0 | 26 | 6 | 6 |
| \mathcal{O}_{6} | 7 | 0 | 28 | 6 | 4 |
| \mathcal{O}_{7} | 4 | 0 | 31 | 11 | 6 |
| \mathcal{O}_{8} | 1 | 1 | 34 | 14 | 7 |
| \mathcal{O}_{9} | 0 | 1 | 34 | 14 | 7 |

- depth $\left(I\left(d_{k}\right)\right)=4$ for $k=1,2,3,4$;
- $\overline{\mathcal{O}}_{7}$ is Cohen-Macaulay.

$\left(E_{7}, \alpha_{2}\right)$: containment and singular locus of $\overline{\mathcal{O}}_{7}$

The first differential d_{1} contains equations for the orbit closure.

orbit	$\operatorname{rk}\left(d_{1}\right)$
\mathcal{O}_{0}	0
\mathcal{O}_{1}	0
\mathcal{O}_{2}	0
\mathcal{O}_{3}	0
\mathcal{O}_{4}	0
\mathcal{O}_{5}	0
\mathcal{O}_{6}	0
\mathcal{O}_{7}	0
\mathcal{O}_{8}	1
\mathcal{O}_{9}	1

Using representatives of each orbit, we can:

- determine orbit containment, by checking for vanishing of d_{1} :

$$
\overline{\mathcal{O}}_{7}=\mathcal{O}_{0} \cup \ldots \cup \mathcal{O}_{7}
$$

- determine singular locus, via the Jacobian criterion:

$$
\operatorname{Sing}\left(\overline{\mathcal{O}}_{7}\right)=\mathcal{O}_{0} \cup \ldots \cup \mathcal{O}_{6}
$$

The coordinate ring

We have a minimal free resolution $\mathcal{F}_{\bullet} \rightarrow R=A / I$, with $\mathcal{V}(I)=\overline{\mathcal{O}}$.

Question

Is R reduced? Equivalently, is I radical?

Proposition

A Noetherian ring R is reduced if and only if it satisfies the conditions $\left(R_{0}\right)$ and $\left(S_{1}\right)$.

Since $\overline{\mathcal{O}}$ is irreducible, I has a unique minimal prime $\mathfrak{p}=\sqrt{I}$. Then:

- $\left(S_{1}\right)$ means I has no embedded primes;
- $\left(R_{0}\right)$ means $R_{\mathfrak{p}}$ is regular.

Reducedness criterion

$$
\mathcal{F}_{\bullet}: F_{0} \stackrel{d_{1}}{\longleftarrow} F_{1} \longleftarrow \ldots \longleftarrow F_{n-1} \stackrel{d_{n}}{\longleftarrow} F_{n} \longleftarrow 0
$$

$\mathcal{F}_{\boldsymbol{\bullet}}$ is the minimal free resolution of $R=A / I$, with $\mathcal{V}(I)=\overline{\mathcal{O}}$.

Proposition (G.)

Assume $\operatorname{codim}(\overline{\mathcal{O}})=c$.

- If $\operatorname{depth}\left(I\left(d_{k}\right)\right)>k$ for all $k>c$, then R satisfies $\left(S_{1}\right)$.
- Let J be the Jacobian matrix of I and $x \in \mathcal{O}$. If $\operatorname{rk}\left(\left.J\right|_{x}\right)=c$, then R satisfies $\left(R_{0}\right)$.

Non normal orbits

The interactive method gives the minimal free resolution $\mathcal{F}_{\bullet} \rightarrow \mathbb{C}[\mathcal{N}(\overline{\mathcal{O}})]$.

To present C :

- take $d_{1}: F_{1} \rightarrow F_{0}$;
- observe $F_{0}=A \oplus F_{0}^{\prime}$, with F_{0}^{\prime} generated in degree $\geqslant 2$;
- $F_{1} \rightarrow F_{0}^{\prime}$ is a presentation of C.

To resolve $\mathbb{C}[\overline{\mathcal{O}}]$, take cone $(\tilde{\pi})$.

State of the project

(־) E_{6}, F_{4} and G_{2}

- Results: http://arxiv.org/abs/1210.6410
- M2 files for orbit closures, normalization and cokernels: http://www.mast.queensu.ca/~galetto/orbits
(-) E_{7} : Computationally intensive.
(-) $E_{8}: ? ? ?$

