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Representations with finitely many orbits

G complex linearly reductive group;

V irreducible representation of G.

The pairs pG,V q such that the action G ýV has finitely many
orbits were classified by V. Kac.

Example

GLnpCq ˆGLmpCq ýHompCn,Cmq;
orbits: Or “ tϕ : Cn Ñ Cm | rkpϕq “ ru
i.e. matrices of given rank;

orbit closures: Or “ tϕ : Cn Ñ Cm | rkpϕq ď ru
i.e. determinantal varieties.
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Representation of a pair pXn, αkq

Theorem (Kac)

pXn, αkq Dynkin diagram with a distinguished node gives:

g “
À

iPZ gi, grading on the simple Lie algebra of type Xn;

G0, group of the Lie subalgebra g0 (has diagram Xnzαk).

The action G0 ýg1 has finitely many orbits.

Example (Am`n´1, αm)

1 m´ 1 m m` 1 m` n´ 1

G0 “ Cˆ ˆ SLnpCq ˆ SLmpCq
g1 “ HompCn,Cmq

Federico Galetto Queen’s University

Free resolutions and representations with finitely many orbits 3 / 20



Representation of a pair pXn, αkq

Example (Cn, αn)

G0 “ Cˆ ˆ SLnpCq
g1 “ Sym2pCnq

Example (Dn, αn)

G0 “ Cˆ ˆ SLnpCq
g1 “

Ź2
pCnq

Example (pEn, α2q for n “ 6, 7, 8)

G0 “ Cˆ ˆ SLnpCq
g1 “

Ź3
pCnq
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Enumerating the orbits

Let e P g1 be nilpotent in g, and Cpeq be its conjugacy class in g.
We have a decomposition into irreducible components:

Cpeq X g1 “ C1peq Y . . .Y Cnpeqpeq

Theorem (Vinberg)

The orbits of G0 ýg1 are the irreducible components Cipeq, for
all choices of conjugacy classes Cpeq and all i, 1 ď i ď npeq.

Theorem (Vinberg)

The orbits of G0 ýg1 correspond to some graded subalgebras of g.

The second result gives a recipe to enumerate all the orbits.
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A wish list for the orbit closures

G0 ýg1 “ O0 Y . . .YOt;

g1 “ AnC (complex affine space);

O Ď AnC affine algebraic variety.

Goal

Understand properties of the orbit closures O.

Defining equations

Containment

Singular loci

Cohen-Macaulay

Gorenstein
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Minimal free resolutions

A “ CrAns is a polynomial ring,

CrOs “ A{I, for some homogeneous ideal I Ă A.

We can achieve the goal by studying the minimal free resolution

F‚ : F0 F1 . . . Fn´1 Fn 0
d1 dn

of CrOs as a graded A-module.

Moreover F‚ is G0-equivariant, so

Fi “
À

jPZ Uj bC Ap´jq,

for some representations Uj of G0.
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A bit of history

For the Lie algebras of classical type:

Lascoux (1978), determinantal varieties (An);

Józefiak, Pragacz, Weyman (1981), minors of symmetric and
antisymmetric matrices;

Lovett (2007), rank varieties (Bn, Cn, Dn).

For the Lie algebras of exceptional type:

Kraśkiewicz, Weyman (2011), E6, F4 and G2;

Kraśkiewicz, Weyman (2013), E7.

In some cases, Kraśkiewicz and Weyman only give the “expected
resolution” of CrN pOqs, the coordinate ring of the normalization
of the orbit closure.
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pE7, α2q: the representation

1 3 4 5 6 7

2

gpE7q “ g´2 ‘ g´1 ‘ g0 ‘ g1 ‘ g2

g0 “ C‘ sl7pCq
G0 “ Cˆ ˆ SL7pCq
g1 “

Ź3C7
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pE7, α2q: the orbits

The action Cˆ ˆ SL7pCq ý
Ź3C7 has 10 orbits:

O9, the dense orbit i.e. O9 “
Ź3C7;

O8, with O8 the hyperdiscrimant hypersurface;

O7, with O7 “ SingpO8q “ σ3pO1q;

. . .

O1, the orbit of the highest weight vector with
O1 “ ConepGrp3, 7qq;

O0, the origin.
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pE7, α2q: the expected resolution for CrO7s

A “ Symp
Ź3C7q “ Crxijk | 1 ď i ă j ă k ď 7s.

Expected resolution of CrO7s:

Sp07qC7 bAÐ Sp34,23qC7 bAp´6q Ð Sp4,35,2qC7 bAp´7q Ð

Ð Sp52,45qC7 bAp´10q Ð Sp6,56qC7 bAp´12q Ð 0

where Sλ is the Schur functor associated to the partition λ.

The Betti table:
0 1 2 3 4

total: 1 35 48 21 7
0: 1 . . . .
1: . . . . .
2: . . . . .
3: . . . . .
4: . . . . .
5: . 35 48 . .
6: . . . . .
7: . . . 21 .
8: . . . . 7
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pE7, 2q: the differential for O7

d2 : Sp4,35,2qC7 bAp´7q ÝÑ Sp34,23qC7 bAp´6q

¨
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˚
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0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 x167 0 x267 . . .
0 0 x167 0 x267 0 0 0 0 . . .

x167 0 0 0 0 x367 0 0 0 . . .
0 x267 0 x367 0 0 0 x467 0 . . .
0 0 0 0 0 0 ´x157 0 ´x257 . . .
0 0 ´x157 0 ´x257 0 0 0 0 . . .

´x157 0 0 0 0 ´x357 0 0 0 . . .
0 ´x257 0 ´x357 0 0 0 ´x457 0 . . .
0 0 x147 0 x247 0 x137 0 x237 . . .

x147 0 0 0 0 x347 ´x127 0 0 . . .
0 x247 0 x347 0 0 0 0 ´x127 . . .

´x137 0 ´x127 0 0 0 0 0 0 . . .
0 ´x237 0 0 ´x127 0 0 x347 0 . . .
0 0 0 ´x237 0 ´x137 0 ´x247 0 . . .
0 0 0 0 0 0 x156 0 x256 . . .
0 0 x156 0 x256 0 0 0 0 . . .

x156 0 0 0 0 x356 0 0 0 . . .
0 x256 0 x356 0 0 0 x456 0 . . .
0 0 ´x146 0 ´x246 0 ´x136 0 ´x236 . . .

´x146 0 0 0 0 ´x346 x126 0 0 . . .
0 ´x246 0 ´x346 0 0 0 0 x126 . . .

x136 0 x126 0 0 0 0 0 0 . . .
0 x236 0 0 x126 0 0 ´x346 0 . . .
0 0 0 x236 0 x136 0 x246 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Constructing the complex

Write an equivariant differential di explicitly in M2

Compute syzygies of di and dᵀi with degree bounds

Splice the resulting complexes

Fi´1 Fi T‚ 0

0 H‚ F ˚i´1 F ˚i

F‚ : H˚‚ Fi´1 Fi T‚ 0

di

dᵀi

di

Questions

Does F‚ coincide with the expected resolution?

Is F‚ exact?
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Equivariant exactness criterion

F‚ : F0 F1 . . . Fn´1 Fn 0
d1 dn

Theorem (Buchsbaum-Eisenbud)

F‚ is exact ðñ @k “ 1, . . . , n

1 rkpFkq “ rkpdkq ` rkpdk`1q;

2 depthpIpdkqq ě k, where Ipdkq is the ideal of A generated by
the maximal non vanishing minors of dk.

Proposition (G.)

F‚ is exact ðñ @k “ 1, . . . , n

1 rkpFkq “ rkpdk|pq ` rkpdk`1|pq for p in the dense orbit;

2 rkpdkq drops at orbit closures of codimension at least k.
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pE7, α2q: the resolution of CrO7s

AÐ Ap´6q35 Ð Ap´7q48 Ð Ap´10q21 Ð Ap´12q7 Ð 0

orbit codimpOiq rkpd1q rkpd2q rkpd3q rkpd4q

O0 35 0 0 0 0
O1 22 0 13 0 0
O2 15 0 20 0 1
O3 14 0 21 6 1
O4 10 0 25 3 3
O5 9 0 26 6 6
O6 7 0 28 6 4
O7 4 0 31 11 6
O8 1 1 34 14 7
O9 0 1 34 14 7

depthpIpdkqq “ 4 for k “ 1, 2, 3, 4;

O7 is Cohen-Macaulay.
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pE7, α2q: containment and singular locus of O7

The first differential d1 contains equations for the orbit closure.

orbit rkpd1q

O0 0
O1 0
O2 0
O3 0
O4 0
O5 0
O6 0
O7 0
O8 1
O9 1

Using representatives of each orbit, we can:

determine orbit containment,
by checking for vanishing of d1:

O7 “ O0 Y . . .YO7;

determine singular locus,
via the Jacobian criterion:

SingpO7q “ O0 Y . . .YO6.
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The coordinate ring

We have a minimal free resolution F‚ Ñ R “ A{I, with VpIq “ O.

Question

Is R reduced? Equivalently, is I radical?

Proposition

A Noetherian ring R is reduced if and only if it satisfies the
conditions pR0q and pS1q.

Since O is irreducible, I has a unique minimal prime p “
?
I.

Then:

pS1q means I has no embedded primes;

pR0q means Rp is regular.
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Reducedness criterion

F‚ : F0 F1 . . . Fn´1 Fn 0
d1 dn

F‚ is the minimal free resolution of R “ A{I, with VpIq “ O.

Proposition (G.)

Assume codimpOq “ c.

If depthpIpdkqq ą k for all k ą c, then R satisfies pS1q.

Let J be the Jacobian matrix of I and x P O.
If rkpJ |xq “ c, then R satisfies pR0q.
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Non normal orbits

The interactive method gives the minimal free resolution
F‚ Ñ CrN pOqs.

F‚ G‚

0 CrOs CrN pOqs C 0
π

π̃

To present C:

take d1 : F1 Ñ F0;

observe F0 “ A‘ F 10, with F 10 generated in degree ě 2;

F1 Ñ F 10 is a presentation of C.

To resolve CrOs, take conepπ̃q.
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State of the project

E6, F4 and G2

Results: http://arxiv.org/abs/1210.6410
M2 files for orbit closures, normalization and cokernels:
http://www.mast.queensu.ca/„galetto/orbits

E7: Computationally intensive.

E8: ???
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