Free resolutions and representations with finitely many orbits

Federico Galetto

Queen's University

September 9, 2013

Federico Galetto

Queen's University

- G complex linearly reductive group;
- V irreducible representation of G.

The pairs (G, V) such that the action $G \subset V$ has finitely many orbits were classified by V. Kac.

Example

- $\operatorname{GL}_n(\mathbb{C}) \times \operatorname{GL}_m(\mathbb{C}) \subset \operatorname{Hom}(\mathbb{C}^n, \mathbb{C}^m);$
- orbits: $\mathcal{O}_r = \{ \varphi : \mathbb{C}^n \to \mathbb{C}^m \mid \mathrm{rk}(\varphi) = r \}$ i.e. matrices of given rank;
- orbit closures: $\overline{\mathcal{O}}_r = \{\varphi : \mathbb{C}^n \to \mathbb{C}^m \mid \mathrm{rk}(\varphi) \leqslant r\}$
 - i.e. determinantal varieties.

Federico Galetto

Theorem (Kac)

 (X_n, α_k) Dynkin diagram with a distinguished node gives:

- $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$, grading on the simple Lie algebra of type X_n ;
- G_0 , group of the Lie subalgebra \mathfrak{g}_0 (has diagram $X_n \setminus \alpha_k$). The action $G_0 \subset \mathfrak{g}_1$ has finitely many orbits.

Representation of a pair (X_n, α_k)

Example (C_n, α_n)

•
$$G_0 = \mathbb{C}^{\times} \times \mathrm{SL}_n(\mathbb{C})$$

•
$$\mathfrak{g}_1 = \operatorname{Sym}_2(\mathbb{C}^n)$$

Example (D_n, α_n)

Example $((E_n, \alpha_2) \text{ for } n = 6, 7, 8)$

Federico Galetto

Queen's University

Let $e \in \mathfrak{g}_1$ be nilpotent in \mathfrak{g} , and C(e) be its conjugacy class in \mathfrak{g} . We have a decomposition into irreducible components:

$$C(e) \cap \mathfrak{g}_1 = C_1(e) \cup \ldots \cup C_{n(e)}(e)$$

Theorem (Vinberg)

The orbits of $G_0 \subset \mathfrak{g}_1$ are the irreducible components $C_i(e)$, for all choices of conjugacy classes C(e) and all $i, 1 \leq i \leq n(e)$.

Theorem (Vinberg)

The orbits of $G_0 \subset \mathfrak{g}_1$ correspond to some graded subalgebras of \mathfrak{g} .

The second result gives a recipe to enumerate all the orbits.

5 / 20

A wish list for the orbit closures

•
$$G_0 \subset \mathfrak{g}_1 = \mathcal{O}_0 \cup \ldots \cup \mathcal{O}_t;$$

- $\mathfrak{g}_1 = \mathbb{A}^n_{\mathbb{C}}$ (complex affine space);
- $\overline{\mathcal{O}} \subseteq \mathbb{A}^n_{\mathbb{C}}$ affine algebraic variety.

Goal

Understand properties of the orbit closures $\overline{\mathcal{O}}$.

- Defining equations
- Containment
- Singular loci
- Cohen-Macaulay
- Gorenstein

Minimal free resolutions

•
$$A = \mathbb{C}[\mathbb{A}^n]$$
 is a polynomial ring,

• $\mathbb{C}[\overline{\mathcal{O}}] = A/I$, for some homogeneous ideal $I \subset A$.

We can achieve the goal by studying the minimal free resolution $\mathcal{F}_{\bullet} \colon F_0 \xleftarrow{d_1} F_1 \xleftarrow{} \dots \xleftarrow{} F_{n-1} \xleftarrow{} d_n F_n \xleftarrow{} 0$

of $\mathbb{C}[\overline{\mathcal{O}}]$ as a graded *A*-module.

Moreover \mathcal{F}_{\bullet} is G_0 -equivariant, so

$$F_i = \bigoplus_{j \in \mathbb{Z}} U_j \otimes_{\mathbb{C}} A(-j),$$

for some representations U_j of G_0 .

Queen's University

Free resolutions and representations with finitely many orbits

For the Lie algebras of classical type:

- Lascoux (1978), determinantal varieties (A_n) ;
- Józefiak, Pragacz, Weyman (1981), minors of symmetric and antisymmetric matrices;
- Lovett (2007), rank varieties (B_n, C_n, D_n) .

For the Lie algebras of exceptional type:

- Kraśkiewicz, Weyman (2011), E_6 , F_4 and G_2 ;
- Kraśkiewicz, Weyman (2013), E₇.

In some cases, Kraśkiewicz and Weyman only give the "expected resolution" of $\mathbb{C}[\mathcal{N}(\overline{\mathcal{O}})]$, the coordinate ring of the normalization of the orbit closure.

(E_7, α_2) : the representation

Federico Galetto

Queen's University

The action $\mathbb{C}^{\times} \times SL_7(\mathbb{C}) \subset \bigwedge^3 \mathbb{C}^7$ has 10 orbits:

- \mathcal{O}_9 , the dense orbit i.e. $\overline{\mathcal{O}}_9 = \bigwedge^3 \mathbb{C}^7$;
- \mathcal{O}_8 , with $\overline{\mathcal{O}}_8$ the hyperdiscrimant hypersurface;

•
$$\mathcal{O}_7$$
, with $\overline{\mathcal{O}}_7 = Sing(\overline{\mathcal{O}}_8) = \sigma_3(\overline{\mathcal{O}}_1)$;

• . . .

- \mathcal{O}_1 , the orbit of the highest weight vector with $\overline{\mathcal{O}}_1 = Cone(Gr(3,7));$
- \mathcal{O}_0 , the origin.

Federico Galetto

(E_7, α_2) : the expected resolution for $\mathbb{C}[\mathcal{O}_7]$

- $A = \operatorname{Sym}(\bigwedge^3 \mathbb{C}^7) = \mathbb{C}[x_{ijk} \mid 1 \le i < j < k \le 7].$
- Expected resolution of $\mathbb{C}[\overline{\mathcal{O}}_7]$:

$$\begin{split} \mathbb{S}_{(0^7)} \mathbb{C}^7 \otimes A &\leftarrow \mathbb{S}_{(3^4, 2^3)} \mathbb{C}^7 \otimes A(-6) \leftarrow \mathbb{S}_{(4, 3^5, 2)} \mathbb{C}^7 \otimes A(-7) \leftarrow \\ &\leftarrow \mathbb{S}_{(5^2, 4^5)} \mathbb{C}^7 \otimes A(-10) \leftarrow \mathbb{S}_{(6, 5^6)} \mathbb{C}^7 \otimes A(-12) \leftarrow 0 \end{split}$$

where \mathbb{S}_{λ} is the Schur functor associated to the partition λ . • The Betti table: 0 1 2 3 4

	0	1	-2	- 3	4
total:	1	35	48	21	7
0:	1				
1:					
2:					·
3:	•	·	·	•	•
4:	•		in	•	•
5:	•	35	48	•	•
6:				÷.,	
7:				21	÷
8:					7

$(E_7,2)$: the differential for $\overline{\mathcal{O}}_7$

$$d_2: \mathbb{S}_{(4,3^5,2)} \mathbb{C}^7 \otimes A(-7) \longrightarrow \mathbb{S}_{(3^4,2^3)} \mathbb{C}^7 \otimes A(-6)$$

/ 0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	x_{167}	0	x_{267}	
0	0	x_{167}	0	x_{267}	0	0	0	0	
x_{167}	0	0	0	0	x_{367}	0	0	0	
0	x_{267}	0	x_{367}	0	0	0	x_{467}	0	
0	0	0	0	0	0	$-x_{157}$	0	$-x_{257}$	
0	0	$-x_{157}$	0	$-x_{257}$	0	0	0	0	
$-x_{157}$	0	0	0	0	$-x_{357}$	0	0	0	
0	$-x_{257}$	0	$-x_{357}$	0	0	0	$-x_{457}$	0	
0	0	x_{147}	0	x_{247}	0	x_{137}	0	x_{237}	
x_{147}	0	0	0	0	x_{347}	$-x_{127}$	0	0	
0	x_{247}	0	x_{347}	0	0	0	0	$-x_{127}$	
$-x_{137}$	0	$-x_{127}$	0	0	0	0	0	0	
0	$-x_{237}$	0	0	$-x_{127}$	0	0	x_{347}	0	
0	0	0	$-x_{237}$	0	$-x_{137}$	0	$-x_{247}$	0	
0	0	0	0	0	0	x_{156}	0	x_{256}	
0	0	x_{156}	0	x_{256}	0	0	0	0	
x_{156}	0	0	0	0	x_{356}	0	0	0	
0	x_{256}	0	x_{356}	0	0	0	x_{456}	0	
0	0	$-x_{146}$	0	$-x_{246}$	0	$-x_{136}$	0	$-x_{236}$	
$-x_{146}$	0	0	0	0	$-x_{346}$	x_{126}	0	0	
0	$-x_{246}$	0	$-x_{346}$	0	0	0	0	x_{126}	
x_{136}	0	x_{126}	0	0	0	0	0	0	
0	x_{236}	0	0	x_{126}	0	0	$-x_{346}$	0	
0	0	0	x_{236}	0	x_{136}	0	x_{246}	0	
\									

Federico Galetto

Queen's University

Constructing the complex

- Write an equivariant differential d_i explicitly in M2
- Compute syzygies of d_i and d_i^{T} with degree bounds
- Splice the resulting complexes

$$F_{i-1} \xleftarrow{d_i} F_i \xleftarrow{} \mathcal{T}_{\bullet} \xleftarrow{} 0$$
$$0 \longrightarrow \mathcal{H}_{\bullet} \longrightarrow F_{i-1}^* \xrightarrow{d_i^{\mathsf{T}}} F_i^*$$
$$\mathcal{F}_{\bullet} : \qquad \mathcal{H}_{\bullet}^* \xleftarrow{} F_{i-1} \xleftarrow{d_i} F_i \xleftarrow{} \mathcal{T}_{\bullet} \xleftarrow{} 0$$

Questions

- Does \mathcal{F}_{\bullet} coincide with the expected resolution?
- Is \mathcal{F}_{\bullet} exact?

Federico Galetto

Queen's University

$$\mathcal{F}_{\bullet} \colon F_0 \xleftarrow{d_1} F_1 \xleftarrow{} \cdots \xleftarrow{} F_{n-1} \xleftarrow{d_n} F_n \xleftarrow{} 0$$

Theorem (Buchsbaum-Eisenbud)

$$\mathcal{F}_{ullet}$$
 is exact $\iff \forall k = 1, \dots, n$

$$\mathbf{I} \operatorname{rk}(F_k) = \operatorname{rk}(d_k) + \operatorname{rk}(d_{k+1});$$

② depth $(I(d_k)) \ge k$, where $I(d_k)$ is the ideal of A generated by the maximal non vanishing minors of d_k .

Proposition (G.)

$$\mathcal{F}_{ullet}$$
 is exact $\iff orall k=1,\ldots,n$

•
$$\operatorname{rk}(F_k) = \operatorname{rk}(d_k|_p) + \operatorname{rk}(d_{k+1}|_p)$$
 for p in the dense orbit;

2 $rk(d_k)$ drops at orbit closures of codimension at least k.

Federico Galetto

Queen's University

 (E_7, α_2) : the resolution of $\mathbb{C}[\overline{\mathcal{O}}_7]$

$A \leftarrow A($	$(-6)^{35} \leftarrow A(-6)^{35}$	$-7)^{48} \leftarrow 1$	$A(-10)^{21}$	$ \leftarrow A(-$	$(12)^7 \leftarrow 0$
orbit	$\operatorname{codim}(\overline{\mathcal{O}}_i)$	$\operatorname{rk}(d_1)$	$\operatorname{rk}(d_2)$	$\operatorname{rk}(d_3)$	$\operatorname{rk}(d_4)$
\mathcal{O}_0	35	0	0	0	0
\mathcal{O}_1	22	0	13	0	0
\mathcal{O}_2	15	0	20	0	1
\mathcal{O}_3	14	0	21	6	1
\mathcal{O}_4	10	0	25	3	3
\mathcal{O}_5	9	0	26	6	6
\mathcal{O}_6	7	0	28	6	4
\mathcal{O}_7	4	0	31	11	6
\mathcal{O}_8	1	1	34	14	7
\mathcal{O}_9	0	1	34	14	7

• depth $(I(d_k)) = 4$ for k = 1, 2, 3, 4;

• $\overline{\mathcal{O}}_7$ is Cohen-Macaulay.

 (E_7, α_2) : containment and singular locus of $\overline{\mathcal{O}}_7$

The first differential d_1 contains equations for the orbit closure.

orbit	$\operatorname{rk}(d_1)$
\mathcal{O}_0	0
\mathcal{O}_1	0
\mathcal{O}_2	0
\mathcal{O}_3	0
\mathcal{O}_4	0
\mathcal{O}_5	0
\mathcal{O}_6	0
\mathcal{O}_7	0
\mathcal{O}_8	1
\mathcal{O}_9	1

Federico Galetto

• determine singular locus, via the Jacobian criterion:

$$Sing(\overline{\mathcal{O}}_7) = \mathcal{O}_0 \cup \ldots \cup \mathcal{O}_6.$$

Queen's University

We have a minimal free resolution $\mathcal{F}_{\bullet} \to R = A/I$, with $\mathcal{V}(I) = \overline{\mathcal{O}}$.

Question

Is R reduced? Equivalently, is I radical?

Proposition

A Noetherian ring R is reduced if and only if it satisfies the conditions (R_0) and (S_1) .

Since $\overline{\mathcal{O}}$ is irreducible, I has a unique minimal prime $\mathfrak{p} = \sqrt{I}$. Then:

- (S_1) means I has no embedded primes;
- (R_0) means R_p is regular.

Reducedness criterion

$$\mathcal{F}_{\bullet} \colon F_0 \xleftarrow{d_1} F_1 \xleftarrow{} \cdots \xleftarrow{} F_{n-1} \xleftarrow{d_n} F_n \xleftarrow{} 0$$

 \mathcal{F}_{\bullet} is the minimal free resolution of R = A/I, with $\mathcal{V}(I) = \overline{\mathcal{O}}$.

Proposition (G.)

Assume $\operatorname{codim}(\overline{\mathcal{O}}) = c$.

- If $depth(I(d_k)) > k$ for all k > c, then R satisfies (S_1) .
- Let J be the Jacobian matrix of I and $x \in \mathcal{O}$. If $\operatorname{rk}(J|_x) = c$, then R satisfies (R_0) .

Federico Galetto

18 / 20

Non normal orbits

The interactive method gives the minimal free resolution $\mathcal{F}_{\bullet} \to \mathbb{C}[\mathcal{N}(\overline{\mathcal{O}})].$

To present C:

- take $d_1: F_1 \rightarrow F_0$;
- observe $F_0 = A \oplus F'_0$, with F'_0 generated in degree ≥ 2 ;
- $F_1 \rightarrow F'_0$ is a presentation of C.

To resolve $\mathbb{C}[\overline{\mathcal{O}}]$, take $\operatorname{cone}(\tilde{\pi})$.

••

E_6 , F_4 and G_2

- Results: http://arxiv.org/abs/1210.6410
- M2 files for orbit closures, normalization and cokernels: http://www.mast.queensu.ca/~galetto/orbits

 E_7 : Computationally intensive.

