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A = C[x1, . . . , xn]

M finitely generated graded A-module

F• minimal free resolution of M

Proposition

If G is a group which acts (reasonably) on A and M , then the
action of G extends to F•.

Question

When F• is determined computationally, can we also determine the
action of G computationally?
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Example

A = C[x, y, z], M = A/(x, y, z)

F• : A
(x y z )←−−−−− A(−1)3

(
−y −z 0
x 0 −z
0 x y

)
←−−−−−−−−− A(−2)3

(
z
−y
x

)
←−−−− A(−3)← 0

If V = C3 = 〈x, y, z〉, then A ∼= Sym(V ) and G = GL(V ) acts
naturally on A and M .
Accounting for the G-action, F• can be written as:

A
d1←− V ⊗C A(−1)

d2←−
2∧
V ⊗C A(−2)

d2←−
3∧
V ⊗C A(−3)← 0
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1 The G-action may determine differentials.

Example

d2 :
∧2 V ⊗C A(−2)→ V ⊗C A(−1) is determined by its degree 2

part, where the basis lives. Restrict to degree 2:∧2 V −→ V ⊗C A1
∼= V ⊗C V ∼=

∧2 V ⊕ Sym2(V )

By Schur’s lemma, there is only one such map up to scalars.

2 Determine the class

[M ] =

n∑
i=0

(−1)i[Fi]

of M in the Grothendieck group of the category of graded
A-modules with a G-action.
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A complex torus of rank m is a group T ∼= (C×)m.

Theorem

If V is a finite dimensional representation of T ∼= (C×)m, then

V ∼=
⊕

α=(α1,...,αm)∈Zm

Vα,

where

Vα = {v ∈ V | ∀t = (t1, . . . , tn) ∈ T, t · v = tα1
1 . . . tαm

m v}.

A non zero v ∈ Vα is called a weight vector with weight α.

Theorem

If G is a complex reductive group, it contains a maximal torus T
and every finite dimensional representation of G is uniquely
determined by the weights of T .
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Example

V = C3 = 〈e1, e2, e3〉

GL(V ) ∼= GL3(C) ⊃ T =

{(
t1 0 0
0 t2 0
0 0 t3

)∣∣∣∣t1, t2, t3 ∈ C×
}
∼= (C×)3

∀t ∈ T t · e1 = t1e1 = t11t
0
2t

0
3e1 wt(e1) = (1, 0, 0)

t · e2 = t2e2 = t01t
1
2t

0
3e1 wt(e2) = (0, 1, 0)

t · e3 = t3e3 = t01t
0
2t

1
3e1 wt(e3) = (0, 0, 1)

V has weights (1, 0, 0), (0, 1, 0) and (0, 0, 1). Any
representation with these 3 weights is isomorphic to V .∧2 V has weights (1, 1, 0), (1, 0, 1) and (0, 1, 1).
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Assume the variables of A are weight vectors.

Assume 0←M ← F0
d1←− F1 is a minimal presentation and

the matrix of d1 is written in a basis of weight vectors of F0.

Calculate a weight from each column in the matrix of d1.

Example

A = Sym(V ), V = C3 = 〈x, y, z〉 and G = GL(V )

wt(x) = (1, 0, 0), wt(y) = (0, 1, 0), wt(z) = (0, 0, 1)

d1 =
(
x y z

)
and G acts trivially on F0

(0, 0, 0) x y z
( )
(1, 0, 0) (0, 1, 0) (0, 0, 1)

So F1
∼= V ⊗C A(−1).
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Consider any term ordering on A.

For F = {f1, . . . , fs} a basis of F , use term over position up:

t1fi > t2fj ⇐⇒ t1 > t2 or t1 = t2 and i > j.

Calculate a weight from the leading term of each column.

Example

Let x > y > z.

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

−y −z 0

x 0 −z
0 x y




(1, 1, 0) (1, 0, 1) (0, 1, 1)

So F2
∼=
∧2 V ⊗C A(−2).
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If the matrix is not written in bases of weight vectors, we may run
into trouble!

Example

(0, 0, 0) x x+ y x+ z
( )

(1, 0, 0) x3

There is no representation of GL3(C) with these weights.

We remedy this by changing basis in the domain so that all
columns have different leading terms.
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Theorem (G.)

Let T be a torus and ϕ : E → F be a minimal T -equivariant
homogeneous map of free A-modules. Suppose:

Φ = (Φ1| . . . |Φr) is the matrix of ϕ w.r.t bases
E = {e1, . . . , er} of E and F = {f1, . . . , fs} of F ;

F is equipped with term over position up w.r.t F ;

LT(Φ1) < . . . < LT(Φr);

F admits a basis of weight vectors F̃ = {f̃1, . . . , f̃s} s.t. the
change of basis from F to F̃ is upper triangular.

Then:

E admits a basis of weight vectors Ẽ = {ẽ1, . . . , ẽr} s.t. the
change of basis from E to Ẽ is upper triangular;

if LT(Φi) = tfj , wt(ẽi) = wt(t) + wt(f̃j).
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