Equivariant resolutions of De Concini-Procesi ideals

Federico Galetto

Joint Mathematics Meetings San Antonio, TX January 13, 2015

Equivariant resolutions

Theorem

Let $R = \mathbb{C}[x_1, \dots, x_n]$, M be a finitely generated graded R-module and

$$F_{\bullet} \colon F_0 \xleftarrow{\partial_1} F_1 \xleftarrow{\partial_2} F_2 \leftarrow \ldots \leftarrow F_{n-1} \xleftarrow{\partial_n} F_n \leftarrow 0$$

a graded minimal free resolution of M.

Let G be a linearly reductive group acting on R and M

- C-linearly,
- preserving degrees $(\deg(g \cdot m) = \deg(m))$,
- preserving products $(g \cdot (rm) = (g \cdot r)(g \cdot m))$.

Then G acts on each F_i and the action commutes with ∂_i .

The resolution F_{\bullet} is said to be G-equivariant.

Equivariant resolutions

Proposition

If F_{\bullet} is an equivariant resolution with the action of a group G, each F_i can be written as $V_i \otimes_{\mathbb{C}} R$, where V_i is a finite dimensional graded representation of G.

To understand an equivariant resolution, we need to identify the isomorphism class of each V_i as a representation.

This information can be used to:

- give a representation theoretic/combinatorial interpretation of Betti numbers;
- refine invariants (such as the Hilbert series);
- describe the differentials in a resolution.

De Concini-Procesi ideals

- $\mu = (\mu_1, \dots, \mu_t)$ partition of n
- X_{μ} $n \times n$ unipotent matrix whose Jordan canonical form has blocks of size μ_1, \dots, μ_t

Definition

The Springer fiber associated to μ is

$$\mathcal{F}_{\mu} := \{ V_0 \subset V_1 \subset \ldots \subset V_n = \mathbb{C}^n \mid \dim_{\mathbb{C}}(V_i) = i, X_{\mu}(V_i) \subseteq V_i \}.$$

Theorem (De Concini-Procesi, 1981)

 $H^*(\mathcal{F}_{\mu})\cong R/I_{\tilde{\mu}}$, where $\tilde{\mu}$ is the conjugate partition of μ .

 $I_{\tilde{\mu}}$ is the De Concini-Procesi ideal associated with $\tilde{\mu}.$

De Concini-Procesi ideals

- $\mu = (\mu_1, \dots, \mu_t)$ partition of n
- \mathcal{D} set of $n \times n$ diagonal matrices;
- \mathcal{N}_{μ} set of $n \times n$ nilpotent matrices whose Jordan canonical form has blocks of size μ_1, \dots, μ_t

Theorem (Kraft, 1981)

$$\mathcal{D} \times_{\mathbb{A}^{n^2}_{\mathbb{C}}} \overline{\mathcal{N}}_{\mu} \cong \operatorname{Spec}(R/I_{\mu})$$

 I_{μ} is the De Concini-Procesi ideal associated with μ .

Facts & questions about DCP ideals

Facts

- The action of the symmetric group \mathfrak{S}_n permuting the variables of $R = \mathbb{C}[x_1, \dots, x_n]$ stabilizes I_{μ} .
- The representation theoretic structure of R/I_{μ} is well understood (Garsia-Procesi, 1992).
- De Concini-Procesi ideals have recently been used in computation of Hilbert series for certain artinian Gorenstein ideals (Geramita-Hoefel-Wehlau, 2014).

Questions

- ullet Can we describe a minimal generating set of I_{μ} ?
- What are the graded Betti numbers of I_{μ} ?
- Can we describe an \mathfrak{S}_n -equivariant resolution of I_{μ} ?

The case of hook partitions

Proposition (Biagioli-Faridi-Rosas 2007)

For $1 \le d \le n$ and $\mu = (n - d + 1, 1^{d-1})$,

- $I_{\mu} = (e_1, \dots, e_{d-1}) + (x_{i_1} \dots x_{i_d}) = E_{n,d} + I_{n,d}$, where the e_i are elementary symmetric polynomials;
- ullet $\{e_1,\ldots,e_{d-1}\}\cup\{x_{i_1}\ldots x_{i_d}\}$ is a minimal generating set of I_μ ;
- a minimal free resolution of $I_{n,d}$ gives one of I_{μ} via iterated mapping cones.

Facts

- $I_{n,d}$ is \mathfrak{S}_n -stable.
- Each e_i is \mathfrak{S}_n -invariant.
- An equivariant resolution of $I_{n,d}$ gives one of I_{μ} via iterated mapping cones.

Sample resolutions

 $I_{n,d}$ has a linear \mathfrak{S}_n -equivariant minimal free resolution:

$$0 \longleftarrow I_{n,d} \longleftarrow F_0 \longleftarrow F_1 \longleftarrow \ldots \longleftarrow F_{n-d} \longleftarrow 0$$

so
$$F_i \cong U_i^{n,d} \otimes_{\mathbb{C}} R(-d-i)$$
.

Examples

• For d=n,

$$0 \longleftarrow I_{n,n} \longleftarrow [n] \longleftarrow 0$$

• For d=1, F_{\bullet} is a Koszul complex, so

$$U_i^{n,1} \cong \bigwedge^{i+1} \mathbb{C}^n \cong [n-i-1,1^{i+1}] \oplus [n-i,1^i].$$

• For d=n-1, $0 \longleftarrow I_{n,n-1} \longleftarrow [n] \oplus [n-1,1] \longleftarrow [n-1,1] \longleftarrow 0$

Main result

Theorem (G.)

 $I_{n,d}$ has an \mathfrak{S}_n -equivariant minimal free resolution of the form

$$U_0^{n,d} \otimes R(-d) \leftarrow \ldots \leftarrow U_i^{n,d} \otimes R(-d-i) \leftarrow \ldots$$

where, for all $0 \le i \le n - d$,

$$U_i^{n,d} \cong \operatorname{Ind}_{\mathfrak{S}_{d+i} \times \mathfrak{S}_{n-d-i}}^{\mathfrak{S}_n} ([d, 1^i] \otimes [n-d-i]).$$

Facts

- $U_i^{n,d}$ is multiplicity free.
- $\bullet \ \operatorname{Res}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_n}(U_i^{n,d}) \cong U_i^{n-1,d} \oplus U_i^{n-1,d-1} \oplus U_{i-1}^{n-1,d}.$

Combinatorial interpretation of Betti numbers

Proposition (G.)

 $U_i^{n,d}$ has a basis consisting of standard Young tableaux on $(d,1^i)$ with entries from $\{1,\ldots,n\}$.

Example (n=5,d=2,i=2)

$$U_2^{4,2}$$
 $\begin{bmatrix} 1 & 2 & 1 & 3 & 1 & 4 \\ 3 & 2 & 2 & 2 \\ 4 & 4 & 3 \end{bmatrix}$