Distinguishing k-configurations (arXiv:1705.09195)

Federico Galetto joint with Y.S. Shin and A. Van Tuyl

McMaster
 University

Mathematics Colloquium
Dalhousie University
October 19, 2017

Definition (k-configuration)

A set of points X is a k-configuration of type $\left(d_{1}, \ldots, d_{s}\right)$ if
(1) $X=\bigsqcup_{i=1}^{s} X_{i}$, with $\left|X_{i}\right|=d_{i}$ and $d_{1}<d_{2}<\cdots<d_{s}<\infty$,
(2) $X_{i} \subset L_{i}$ for some line L_{i},
(3) $X_{i} \cap L_{j}=\varnothing$ for all $i<j$.

Example (A k-configuration of type $(1,2,3)$)

Example (Different k-configurations of type (1, 2, 3))

The number of lines through 3 points is different.

We introduce an equivalence relation on vectors in \mathbb{C}^{3} :
$\left(a_{0}, a_{1}, a_{2}\right) \sim\left(b_{0}, b_{1}, b_{2}\right) \Longleftrightarrow \exists \lambda \in \mathbb{C}^{\times}:\left(a_{0}, a_{1}, a_{2}\right)=\lambda\left(b_{0}, b_{1}, b_{2}\right)$

Definition (Projective plane)

$$
\mathbb{P}^{2}:=\left(\mathbb{C}^{3} \backslash\{(0,0,0)\}\right) / \sim
$$

A point in \mathbb{P}^{2} is an equivalence class $\left[a_{0}: a_{1}: a_{2}\right]$.

- The points $\left[1: a_{1}: a_{2}\right]$ form a plane \mathbb{C}^{2}.
- The points $\left[0: a_{1}: a_{2}\right]$, with $\left(a_{1}, a_{2}\right) \neq(0,0)$, form a circle (each representing a direction at infinity).

For a set $X \subseteq \mathbb{P}^{2}$, we let I_{X} be the ideal of $\mathbb{C}\left[x_{0}, x_{1}, x_{2}\right]$ generated by all homogeneous polynomials vanishing at all points of X.

Definition (Coordinate ring of X)

$$
\mathbb{C}[X]:=\mathbb{C}\left[x_{0}, x_{1}, x_{2}\right] / I_{X}
$$

Example

- $I_{\mathbb{P}^{2}}=\langle 0\rangle$ and $\mathbb{C}\left[\mathbb{P}^{2}\right]=\mathbb{C}\left[x_{0}, x_{1}, x_{2}\right]$
- If $X=\{[1: 0: 0]\}$, then $I_{X}=\left\langle x_{1}, x_{2}\right\rangle$ and $\mathbb{C}[X] \cong \mathbb{C}\left[x_{0}\right]$

For $X \subseteq \mathbb{P}^{2}$, the coordinate ring $\mathbb{C}[X]$ is graded:

$$
\mathbb{C}[X]=\bigoplus_{t \in \mathbb{N}} \mathbb{C}[X]_{t}
$$

where $\mathbb{C}[X]_{t}$ contains cosets of forms of degree t.
Definition (Hilbert function of X)

$$
\mathbf{H}_{X}(t):=\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}[X]_{t}\right), \quad t \in \mathbb{N}
$$

Example

- $\mathbf{H}_{\mathbb{P}^{2}}(t)=\binom{t+2}{2}$
- If $X=\{[1: 0: 0]\}$, then $\mathbf{H}_{X}(t)=1$ for all $t \in \mathbb{N}$.

Proposition

Let $X=\left\{P_{1}, \ldots, P_{n}\right\} \subset \mathbb{P}^{2}$.

- $I_{X}=I_{P_{1}} \cap I_{P_{2}} \cap \cdots \cap I_{P_{n}}$
- $\mathbf{H}_{X}(t)=|X|=n$ for all $t \gg 0$

Example

Let X be the k-configuration of type $(1,2,3)$ depicted below.

Consider a function $h: \mathbb{N} \rightarrow \mathbb{N}$.

Problem

Is there $X \subseteq \mathbb{P}^{2}$ such that $\mathbf{H}_{X}(t)=h(t)$ for all $t \in \mathbb{N}$?
Macalauy gave an answer in terms of monomial ideals, corresponding to points (with multiplicities) along the axes of \mathbb{P}^{2}.

Problem

Is there a finite set of points $X \subseteq \mathbb{P}^{2}$ such that $\mathbf{H}_{X}(t)=h(t)$ for all $t \in \mathbb{N}$?

Given a function $h: \mathbb{N} \rightarrow \mathbb{N}$, the first difference of h is the function $\Delta h: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\Delta h(t):= \begin{cases}h(0), & t=0 \\ h(t)-h(t-1), & t>0\end{cases}
$$

Theorem (Geramita, Maroscia, Roberts 1983)

The function $h: \mathbb{N} \rightarrow \mathbb{N}$ is the Hilbert function of a finite set of points in \mathbb{P}^{2} if and only if there exist $\alpha \leqslant \beta \in \mathbb{N}$ such that
(1) $\Delta h(t)=t+1$ for $0 \leqslant t<\alpha$,
(2) $\Delta h(t) \geqslant \Delta h(t+1)$ for $t \geqslant \alpha$,
(3) $\Delta h(t)=0$ for all $t \geqslant \beta$.

Example

t	0	1	2	3	4	5	6	7	\ldots
$h(t)$	1	3	6	9	11	13	13	13	\ldots
$\Delta h(t)$	1	2	3	3	2	2	0	0	\ldots

If X is the set of colored points, then $h=\mathbf{H}_{X}$. The set X is a k-configuration of type $(2,5,6)$.

Theorem (Roberts, Roitman 1989)

All k-configurations of type $\left(d_{1}, \ldots, d_{s}\right)$ have the same Hilbert function.

Finer invariants also fail to distinguish k-configurations of the same type.

Theorem (Geramita, Harima, Shin, 2000)
All k-configurations of type $\left(d_{1}, \ldots, d_{s}\right)$ have the same graded Betti numbers.

$$
\text { Let } X=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\} \subset \mathbb{P}^{2}
$$

Definition (Symbolic powers of an ideal of points)

The m-th symbolic power of I_{X} is the ideal

$$
I_{X}^{(m)}:=I_{P_{1}}^{m} \cap I_{P_{2}}^{m} \cap \cdots \cap I_{P_{n}}^{m}
$$

Equivalently, $I_{X}^{(m)}$ is the ideal generated by all homogeneous polynomials that vanish with order at least m at every point of X.
The vanishing locus of $I_{X}^{(m)}$, denoted $m X$, consists of all points of X each with multiplicity m. This is an example of a fat point scheme supported on X.

Definition (Hilbert function of $m X$)

$$
\mathbf{H}_{m X}(t):=\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}\left[x_{0}, x_{1}, x_{2}\right] / I_{X}^{(m)}\right)_{t}
$$

Example

Let X be the k-configuration of type $(1,2,3)$ depicted below.

$$
\begin{array}{c|cccccccc}
t & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \ldots \\
\hline \mathbf{H}_{2 X}(t) & 1 & 3 & 6 & 10 & 14 & 18 & 18 & \ldots
\end{array}
$$

Our result distinguishes k-configurations of the same type using Hilbert functions and symbolic powers/fat point schemes.

Theorem (G., Shin, Van Tuyl, 2017)

Let $X \subseteq \mathbb{P}^{2}$ be a k-configuration of type $\left(d_{1}, \ldots, d_{s}\right) \neq(1)$. Then there exists $m_{0} \in \mathbb{N}$ such that for all $m \geqslant m_{0}$

$$
\begin{aligned}
\Delta \mathbf{H}_{m X}\left(m d_{s}-1\right)= & \text { number of lines containing exactly } \\
& d_{s} \text { points of } X .
\end{aligned}
$$

Moreover,

- if $\left(d_{1}, \ldots, d_{s}\right) \neq(1,2, \ldots, s)$, we can take $m_{0}=2$;
- if $\left(d_{1}, \ldots, d_{s}\right)=(1,2, \ldots, s)$, we can take $m_{0}=s+1$.

Example (Different k-configurations of type (1,2,3))

$\Delta \mathbf{H}_{4 X}(11)=4$

$\Delta \mathbf{H}_{4 X}(11)=2$

$\Delta \mathbf{H}_{4 X}(11)=3$

$\Delta \mathbf{H}_{4 X}(11)=1$

Outline of the proof.

- Uniform labeling of the lines through the k-configuration.
- Use a result of Cooper-Harbourne-Teitler (2011) to bound values of the Hilbert function of $m X$:

$$
f_{\mathbf{v}}(t) \leqslant \mathbf{H}_{m X}(t) \leqslant F_{\mathbf{v}}(t)
$$

in terms of a reduction vector \mathbf{v}.

- For our k-configurations the bounds coincide, allowing us to relate $\Delta \mathbf{H}_{m X}(t)$ to the number of lines containing the maximum number of points.
- The type $(1,2, \ldots, s)$ needs further analysis with tools from commutative algebra.

Open questions:

- The value $m_{0}=s+1$ for the type $(1,2, \ldots, s)$ is not optimal. What is the smallest possible value of m_{0} ?
- What other discrete invariants can we use to completely characterize an isomorphism class of k-configurations?
- Can symbolic powers of k-configurations be used to separate components of a Hilbert scheme of points?

If $X \subseteq \mathbb{P}^{2}$ is a finite set of points, then $\mathbf{H}_{m X}(t)=e$ for all $t \gg 0$.

Definition (Regularity index)

$$
\begin{aligned}
\operatorname{ri}(m X) & =\min \left\{t \in \mathbb{N} \mid \mathbf{H}_{m X}(t)=e\right\} \\
& =\max \left\{t \in \mathbb{N} \mid \Delta \mathbf{H}_{m X}(t) \neq 0\right\}
\end{aligned}
$$

Corollary

Let $X \subseteq \mathbb{P}^{2}$ be a k-configuration of type $\left(d_{1}, \ldots, d_{s}\right)$. Then for all integers $m \geqslant s+1$ we have

$$
\operatorname{ri}(m X)=m d_{s}-1
$$

Let $h: \mathbb{N} \rightarrow \mathbb{N}$ be the Hilbert function of a finite set of points in \mathbb{P}^{2}.

Problem (Geramita, Migliore, Sabourin, 2006)

What are the possible Hilbert functions of fat point schemes whose support has Hilbert function h ?

Corollary

Fix integers $m \geqslant s+1 \geqslant 3$. Let X be a k-configuration of type $(1,2, \ldots, s)$. There are at least $s+1$ possible Hilbert functions of fat points schemes whose support has Hilbert function \mathbf{H}_{X}.

