Distinguishing k-configurations (arXiv:1705.09195)

Federico Galetto joint with Y.S. Shin and A. Van Tuyl

Mathematics Colloquium Dalhousie University October 19, 2017

Definition (k-configuration)

A set of points X is a *k*-configuration of type (d_1, \ldots, d_s) if

- $X = \bigsqcup_{i=1}^{s} X_i, \text{ with } |X_i| = d_i \text{ and } d_1 < d_2 < \cdots < d_s < \infty,$
- 2 $X_i \subset L_i$ for some line L_i ,

$$X_i \cap L_j = \emptyset$$
 for all $i < j$.

The number of lines through 3 points is different.

We introduce an equivalence relation on vectors in \mathbb{C}^3 :

 $(a_0, a_1, a_2) \sim (b_0, b_1, b_2) \iff \exists \lambda \in \mathbb{C}^{\times} : (a_0, a_1, a_2) = \lambda(b_0, b_1, b_2)$

Definition (Projective plane)

 $\mathbb{P}^2 := (\mathbb{C}^3 \setminus \{(0,0,0)\}) / \sim$

A point in \mathbb{P}^2 is an equivalence class $[a_0:a_1:a_2]$.

- The points $[1:a_1:a_2]$ form a plane \mathbb{C}^2 .
- The points [0 : a₁ : a₂], with (a₁, a₂) ≠ (0, 0), form a circle (each representing a direction at infinity).

For a set $X \subseteq \mathbb{P}^2$, we let I_X be the ideal of $\mathbb{C}[x_0, x_1, x_2]$ generated by all homogeneous polynomials vanishing at all points of X.

Definition (Coordinate ring of X)

$$\mathbb{C}[X] := \mathbb{C}[x_0, x_1, x_2]/I_X$$

Example

•
$$I_{\mathbb{P}^2} = \langle 0 \rangle$$
 and $\mathbb{C}[\mathbb{P}^2] = \mathbb{C}[x_0, x_1, x_2]$

• If $X = \{[1:0:0]\}$, then $I_X = \langle x_1, x_2 \rangle$ and $\mathbb{C}[X] \cong \mathbb{C}[x_0]$

For $X \subseteq \mathbb{P}^2$, the coordinate ring $\mathbb{C}[X]$ is graded:

$$\mathbb{C}[X] = \bigoplus_{t \in \mathbb{N}} \mathbb{C}[X]_t,$$

where $\mathbb{C}[X]_t$ contains cosets of forms of degree t.

Definition (Hilbert function of X)

$$\mathbf{H}_X(t) := \dim_{\mathbb{C}}(\mathbb{C}[X]_t), \quad t \in \mathbb{N}.$$

Example

•
$$\mathbf{H}_{\mathbb{P}^2}(t) = \binom{t+2}{2}$$

• If $X = \{[1:0:0]\}$, then $\mathbf{H}_X(t) = 1$ for all $t \in \mathbb{N}$.

Proposition

Let
$$X = \{P_1, \ldots, P_n\} \subset \mathbb{P}^2$$
.

•
$$I_X = I_{P_1} \cap I_{P_2} \cap \dots \cap I_{P_n}$$

•
$$\mathbf{H}_X(t) = |X| = n$$
 for all $t \gg 0$

Example

Let X be the k-configuration of type (1,2,3) depicted below.

Consider a function $h \colon \mathbb{N} \to \mathbb{N}$.

Problem

Is there $X \subseteq \mathbb{P}^2$ such that $\mathbf{H}_X(t) = h(t)$ for all $t \in \mathbb{N}$?

Macalauy gave an answer in terms of monomial ideals, corresponding to points (with multiplicities) along the axes of \mathbb{P}^2 .

Problem

Is there a finite set of points $X \subseteq \mathbb{P}^2$ such that $\mathbf{H}_X(t) = h(t)$ for all $t \in \mathbb{N}$?

Given a function $h: \mathbb{N} \to \mathbb{N}$, the *first difference* of h is the function $\Delta h: \mathbb{N} \to \mathbb{N}$ defined by

$$\Delta h(t) := \begin{cases} h(0), & t = 0, \\ h(t) - h(t-1), & t > 0. \end{cases}$$

Theorem (Geramita, Maroscia, Roberts 1983)

The function $h: \mathbb{N} \to \mathbb{N}$ is the Hilbert function of a finite set of points in \mathbb{P}^2 if and only if there exist $\alpha \leq \beta \in \mathbb{N}$ such that

•
$$\Delta h(t) = t + 1$$
 for $0 \leq t < \alpha$,

$$2 \ \Delta h(t) \geqslant \Delta h(t+1) \text{ for } t \geqslant \alpha,$$

3
$$\Delta h(t) = 0$$
 for all $t \ge \beta$.

Example

If X is the set of colored points, then $h = \mathbf{H}_X$. The set X is a k-configuration of type (2, 5, 6).

Theorem (Roberts, Roitman 1989)

All k-configurations of type (d_1, \ldots, d_s) have the same Hilbert function.

Finer invariants also fail to distinguish k-configurations of the same type.

Theorem (Geramita, Harima, Shin, 2000)

All k-configurations of type (d_1, \ldots, d_s) have the same graded Betti numbers.

Let $X = \{P_1, P_2, \ldots, P_n\} \subset \mathbb{P}^2$.

Definition (Symbolic powers of an ideal of points) The *m*-th symbolic power of I_X is the ideal

$$I_X^{(m)} := I_{P_1}^m \cap I_{P_2}^m \cap \dots \cap I_{P_n}^m.$$

Equivalently, $I_X^{(m)}$ is the ideal generated by all homogeneous polynomials that vanish with order at least m at every point of X.

The vanishing locus of $I_X^{(m)}$, denoted mX, consists of all points of X each with multiplicity m. This is an example of a *fat point* scheme supported on X.

Definition (Hilbert function of mX)

$$\mathbf{H}_{mX}(t) := \dim_{\mathbb{C}} \left(\mathbb{C}[x_0, x_1, x_2] / I_X^{(m)} \right)_t$$

Example

Let X be the k-configuration of type (1, 2, 3) depicted below.

Our result distinguishes k-configurations of the same type using Hilbert functions and symbolic powers/fat point schemes.

Theorem (G., Shin, Van Tuyl, 2017)

Let $X \subseteq \mathbb{P}^2$ be a k-configuration of type $(d_1, \ldots, d_s) \neq (1)$. Then there exists $m_0 \in \mathbb{N}$ such that for all $m \ge m_0$

 $\Delta \mathbf{H}_{mX}(md_s-1) = \textit{number of lines containing exactly} \\ d_s \textit{ points of } X.$

Moreover,

- if $(d_1, ..., d_s) \neq (1, 2, ..., s)$, we can take $m_0 = 2$;
- if $(d_1, ..., d_s) = (1, 2, ..., s)$, we can take $m_0 = s + 1$.

Distinguishing k-configurations

Outline of the proof.

- Uniform labeling of the lines through the k-configuration.
- Use a result of Cooper-Harbourne-Teitler (2011) to bound values of the Hilbert function of mX:

$$f_{\mathbf{v}}(t) \leqslant \mathbf{H}_{mX}(t) \leqslant F_{\mathbf{v}}(t)$$

in terms of a reduction vector \mathbf{v} .

- For our k-configurations the bounds coincide, allowing us to relate $\Delta \mathbf{H}_{mX}(t)$ to the number of lines containing the maximum number of points.
- The type $(1, 2, \ldots, s)$ needs further analysis with tools from commutative algebra.

Open questions:

- The value $m_0 = s + 1$ for the type (1, 2, ..., s) is not optimal. What is the smallest possible value of m_0 ?
- What other discrete invariants can we use to completely characterize an isomorphism class of k-configurations?
- Can symbolic powers of k-configurations be used to separate components of a Hilbert scheme of points?

If $X \subseteq \mathbb{P}^2$ is a finite set of points, then $\mathbf{H}_{mX}(t) = e$ for all $t \gg 0$.

Definition (Regularity index)

$$\operatorname{ri}(mX) = \min\{t \in \mathbb{N} \mid \mathbf{H}_{mX}(t) = e\}$$
$$= \max\{t \in \mathbb{N} \mid \Delta \mathbf{H}_{mX}(t) \neq 0\}$$

Corollary

Let $X \subseteq \mathbb{P}^2$ be a k-configuration of type (d_1, \ldots, d_s) . Then for all integers $m \ge s + 1$ we have

$$\operatorname{ri}(mX) = md_s - 1.$$

Let $h \colon \mathbb{N} \to \mathbb{N}$ be the Hilbert function of a finite set of points in \mathbb{P}^2 .

Problem (Geramita, Migliore, Sabourin, 2006)

What are the possible Hilbert functions of fat point schemes whose support has Hilbert function h?

Corollary

Fix integers $m \ge s + 1 \ge 3$. Let X be a k-configuration of type (1, 2, ..., s). There are at least s + 1 possible Hilbert functions of fat points schemes whose support has Hilbert function \mathbf{H}_X .