The symbolic defect of an ideal (arXiv:1610.00176)

Federico Galetto
joint with A.V. Geramita, Y.S. Shin, and A. Van Tuyl

McMaster University

AMS Spring Central Sectional Meeting Ohio State University, Columbus, OH March 17, 2017

Symbolic powers

Let $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ and let $I \subseteq R$ be an ideal.
Definition (m-th symbolic power)

$$
I^{(m)}=\bigcap_{P \in \operatorname{Ass}(I)}\left(I^{m} R_{P} \cap R\right)
$$

We can think of elements of $I^{(m)}$ as polynomials vanishing on the zero locus of I in \mathbb{P}^{n} with multiplicity at least m.

Observation

$$
I^{m} \subseteq I^{(m)}
$$

Containment and comparison

Containment problem

Given m, find the smallest r such that

$$
I^{(r)} \subseteq I^{m}
$$

Comparison problem

Given m, how far is I^{m} from $I^{(m)}$? Or how big is $I^{(m)} / I^{m}$?
Some work related to the second problem:

- Arsie-Vatne (saturation)
- Huneke, Herzog, Ulrich, and Vasconcelos (height two primes)
- Schenzel (monomial curves)

Symbolic defect

Definition (Symbolic defect of an ideal I)

$$
\operatorname{sdefect}(I, m):=\mu\left(I^{(m)} / I^{m}\right)
$$

where μ is the minimal number of generators

Observations

- $\operatorname{sdefect}(I, m)=t \Rightarrow I^{(m)}=I^{m}+\left\langle F_{1}, \ldots, F_{t}\right\rangle$
- $\operatorname{sdefect}(I, 1)=0$
- I complete intersection $\Rightarrow \operatorname{sdefect}(I, m)=0$ for all m

The first non-trivial case is when $\operatorname{sdefect}(I, 2)=1$.

Symbolic defect and points

Let $X \subseteq \mathbb{P}^{2}$ be a finite set of points, I_{X} its defining ideal.

Theorem

The following are equivalent
(1) I_{X} is a complete intersection
(2) $\operatorname{sdefect}\left(I_{X}, m\right)=0$ for all $m \geqslant 1$
(3) $\operatorname{sdefect}\left(I_{X}, m\right)=0$ for some $m \geqslant 2$

Symbolic defect and general points

Theorem (G., Geramita, Shin, Van Tuyl, 2016)

For $X \subseteq \mathbb{P}^{2}$ a general set of s points:
(1) $\operatorname{sdefect}\left(I_{X}, 2\right)=0$ if and only if $s=1,2,4$
(2) $\operatorname{sdefect}\left(I_{X}, 2\right)=1$ if and only if $s=3,5,7,8$
(3) $\operatorname{sdefect}\left(I_{X}, 2\right)>1$ if and only if $s=6$ or $s \geqslant 9$

In the proof, we use

- Alexander-Hirschowitz theorem on the Hilbert function of $I_{X}^{(2)}$;
- works of Catalisano, Geramita, Gregory, Harbourne, Idà, Lorenzini, Maroscia, and Roberts to resolve I_{X} and $I_{X}^{(2)}$;
- Hilbert series computations.

Symbolic defect sequence

Definition (Symbolic defect sequence of I)

$$
\{\operatorname{sdefect}(I, m)\}_{m=0}^{\infty}
$$

Question

What can be said about the symbolic defect sequence?

Example

For $X \subseteq \mathbb{P}^{2}$ a set of 8 general points:

$$
\{\operatorname{sdefect}(I, m)\}_{m=0}^{\infty}=\begin{array}{lllllll}
0 & 1 & 3 & 6 & 10 & 9 & 7
\end{array}
$$

Star configurations

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{s}\right\}$ be a set of forms in $\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ such that all subsets of \mathcal{F} of cardinality $c+1$ are regular sequences.

Definition (Star configuration)

$$
I_{c, \mathcal{F}}=\bigcap_{1 \leqslant i_{1}<\ldots<i_{c} \leqslant s}\left\langle F_{i_{1}}, \ldots, F_{i_{c}}\right\rangle
$$

The zero locus of $I_{c, \mathcal{F}}$ in \mathbb{P}^{n} is called a star configuration.

Definition (Linear star configuration)

If F_{1}, \ldots, F_{s} are linear forms, the star configuration is called linear.

Symbolic defect and star configurations

Theorem (G., Geramita, Shin, Van Tuyl, 2016)

- $\operatorname{sdefect}\left(I_{c, \mathcal{F}}, 2\right) \leqslant\binom{ s}{c-2}$, with equality in the linear case
- $\operatorname{sdefect}\left(I_{c, \mathcal{F}}, 3\right) \leqslant\binom{ s}{c-3}+\binom{s}{c-2}\binom{s}{c-1}$
- $\operatorname{sdefect}\left(I_{c, \mathcal{F}}, m\right)=1$ if and only if $c=m=2$

Using a result of Geramita-Harbourne-Migliore-Nagel, we reduce to the monomial case, where we perform direct computations.

Symbolic defect forcing geometry

As a partial converse of the previous theorem, we prove:

Theorem (G., Geramita, Shin, Van Tuyl, 2016)

Let X be a set of $\binom{\alpha+1}{2}$ points in \mathbb{P}^{2} with generic Hilbert function. If sdefect $\left(I_{X}, 2\right)=1$, then X is a linear star configuration.

Our proof uses a theorem of Bocci-Chiantini and degree considerations on the generators of I_{X} and $I_{X}^{(2)}$.

Symbolic defect and edge ideals

Theorem (Janssen, Kamp, Vander Woude, 2017)
If I is the edge ideal of a cycle of length $2 n+1$, then

- $\operatorname{sdefect}(I, m)=0$ for $1 \leqslant m \leqslant n$;
- $\operatorname{sdefect}(I, n+1)=1$;
- for $n+2 \leqslant m \leqslant 2 n+1$

$$
\operatorname{sdefect}(I, m)=\sum_{i=1}^{2 n+1}\binom{2 n+1}{i}\binom{i}{m-n-1-i}
$$

Symbolic defect and cover ideals of graphs

Theorem (Drabkin, Guerrieri, 2018)

If the symbolic Rees algebra of I is Noetherian, then $\operatorname{sdefect}(I, m)$ is quasi-polynomial.

Drabkin and Guerrieri also prove several statements on the symbolic defect of cover ideal of graphs, such as

Theorem (Drabkin, Guerrieri, 2018)

Let I be the cover ideal of a graph G. We have $\operatorname{sdefect}(I, 2)=1$ if and only if G is non-bipartite and every vertex of G is adjacent to every odd cycle in G.

