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Symbolic powers

Let R = k[x0, x1, . . . , xn] and let I ⊆ R be an ideal.

Definition (m-th symbolic power)

I(m) =
⋂

P∈Ass(I)

(ImRP ∩R)

We can think of elements of I(m) as polynomials vanishing on the
zero locus of I in Pn with multiplicity at least m.

Observation

Im ⊆ I(m)
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Containment and comparison

Containment problem

Given m, find the smallest r such that

I(r) ⊆ Im.

Comparison problem

Given m, how far is Im from I(m)? Or how big is I(m)/Im?

Some work related to the second problem:

Arsie-Vatne (saturation)

Huneke, Herzog, Ulrich, and Vasconcelos (height two primes)

Schenzel (monomial curves)
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Symbolic defect

Definition (Symbolic defect of an ideal I)

sdefect(I,m) := µ
(
I(m)/Im

)
where µ is the minimal number of generators

Observations

sdefect(I,m) = t⇒ I(m) = Im + 〈F1, . . . , Ft〉
sdefect(I, 1) = 0

I complete intersection ⇒ sdefect(I,m) = 0 for all m

The first non-trivial case is when sdefect(I, 2) = 1.
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Symbolic defect and points

Let X ⊆ P2 be a finite set of points, IX its defining ideal.

Theorem

The following are equivalent

1 IX is a complete intersection

2 sdefect(IX ,m) = 0 for all m > 1

3 sdefect(IX ,m) = 0 for some m > 2
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Symbolic defect and general points

Theorem (G., Geramita, Shin, Van Tuyl, 2016)

For X ⊆ P2 a general set of s points:

1 sdefect(IX , 2) = 0 if and only if s = 1, 2, 4

2 sdefect(IX , 2) = 1 if and only if s = 3, 5, 7, 8

3 sdefect(IX , 2) > 1 if and only if s = 6 or s > 9

In the proof, we use

Alexander-Hirschowitz theorem on the Hilbert function of I
(2)
X ;

works of Catalisano, Geramita, Gregory, Harbourne, Idà,

Lorenzini, Maroscia, and Roberts to resolve IX and I
(2)
X ;

Hilbert series computations.
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Symbolic defect sequence

Definition (Symbolic defect sequence of I)

{sdefect(I,m)}∞m=0

Question

What can be said about the symbolic defect sequence?

Example

For X ⊆ P2 a set of 8 general points:

{sdefect(I,m)}∞m=0 = 0 1 3 6 10 9 7

Federico Galetto McMaster University

The symbolic defect of an ideal



Star configurations

Let F = {F1, . . . , Fs} be a set of forms in k[x0, x1, . . . , xn] such
that all subsets of F of cardinality c+ 1 are regular sequences.

Definition (Star configuration)

Ic,F =
⋂

16i1<···<ic6s
〈Fi1 , . . . , Fic〉

The zero locus of Ic,F in Pn is called a star configuration.

Definition (Linear star configuration)

If F1, . . . , Fs are linear forms, the star configuration is called linear.
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Symbolic defect and star configurations

Theorem (G., Geramita, Shin, Van Tuyl, 2016)

sdefect(Ic,F , 2) 6

(
s

c− 2

)
, with equality in the linear case

sdefect(Ic,F , 3) 6

(
s

c− 3

)
+

(
s

c− 2

)(
s

c− 1

)
sdefect(Ic,F ,m) = 1 if and only if c = m = 2

Using a result of Geramita-Harbourne-Migliore-Nagel, we reduce to
the monomial case, where we perform direct computations.
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Symbolic defect forcing geometry

As a partial converse of the previous theorem, we prove:

Theorem (G., Geramita, Shin, Van Tuyl, 2016)

Let X be a set of
(
α+1
2

)
points in P2 with generic Hilbert function.

If sdefect(IX , 2) = 1, then X is a linear star configuration.

Our proof uses a theorem of Bocci-Chiantini and degree

considerations on the generators of IX and I
(2)
X .
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Symbolic defect and edge ideals

Theorem (Janssen, Kamp, Vander Woude, 2017)

If I is the edge ideal of a cycle of length 2n+ 1, then

sdefect(I,m) = 0 for 1 6 m 6 n;

sdefect(I, n+ 1) = 1;

for n+ 2 6 m 6 2n+ 1

sdefect(I,m) =

2n+1∑
i=1

(
2n+ 1

i

)(
i

m− n− 1− i

)
.
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Symbolic defect and cover ideals of graphs

Theorem (Drabkin, Guerrieri, 2018)

If the symbolic Rees algebra of I is Noetherian, then sdefect(I,m)
is quasi-polynomial.

Drabkin and Guerrieri also prove several statements on the
symbolic defect of cover ideal of graphs, such as

Theorem (Drabkin, Guerrieri, 2018)

Let I be the cover ideal of a graph G. We have sdefect(I, 2) = 1 if
and only if G is non-bipartite and every vertex of G is adjacent to
every odd cycle in G.
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