# Symmetric shifted ideals

# Federico Galetto



Combinatorial Algebra meets Algebraic Combinatorics Dalhousie University January 25, 2020

- Started at CMO in May 2017
- Joint with:
  - Jennifer Biermann (Hobart and William Smith Colleges)
  - Hernán de Alba (Universidad Autónoma de Zacatecas)
  - Satoshi Murai (Waseda University)
  - Uwe Nagel (University of Kentucky)
  - Augustine O'Keefe (Connecticut College)
  - Tim Römer (Universität Osnabrück)
  - Alexandra Seceleanu (University of Nebraska, Lincoln)
- Available as arXiv:1907.04288
- To appear in Journal of Algebra

#### Definition

Let  $I \subseteq R = \Bbbk[x_1, \dots, x_n]$  be a homogeneous ideal. The numbers

$$\beta_{i,j}(I) = \dim_{\mathbb{k}} \operatorname{Tor}_i(I, \mathbb{k})_j$$

are called the Betti numbers of I.

Observations:

- If  $F_{\bullet}$  is a minimal free resolution of I, then  $\beta_{i,j}(I)$  is the rank of  $F_i$  in degree j.
- A description of  $F_{\bullet}$  is also desirable.
- Both  $\beta_{i,j}(I)$  and  $F_{\bullet}$  are (in general) hard to find.

Assumptions:

- $\mathfrak{S}_n$  acts on  $\Bbbk[x_1, \ldots, x_n]$  permuting variables
- $I \subseteq \Bbbk[x_1,\ldots,x_n]$  be a monomial ideal such that  $\mathfrak{S}_n \cdot I \subseteq I$

#### Lemma

The minimal monomial generating set G(I) of I splits into  $\mathfrak{S}_n$ -orbits  $\{\sigma(x^{\lambda}) : \sigma \in \mathfrak{S}_n\}$  for some partitions  $\lambda \in \mathbb{N}^n$ .

### Definition

$$P(I) := \{\lambda : x^{\lambda} \in I\}, \qquad \Lambda(I) := \{\lambda : x^{\lambda} \in G(I)\}.$$

Convention:  $\lambda = (\lambda_1, \dots, \lambda_n)$  satisfies  $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$ .

Let  $I \subset \Bbbk[x_1, \ldots, x_n]$  be an  $\mathfrak{S}_n$ -fixed monomial ideal.

### Definition (Shifted ideal)

We say I is *shifted* if, for every  $\lambda = (\lambda_1, \ldots, \lambda_n) \in P(I)$  and  $1 \leq k < n$  with  $\lambda_k < \lambda_n$ , we have  $x^{\lambda} x_k / x_n \in I$ .

### Definition (Strongly shifted ideal)

We say I is strongly shifted if, for every  $\lambda = (\lambda_1, \ldots, \lambda_n) \in P(I)$ and  $1 \leq k < l \leq n$  with  $\lambda_k < \lambda_l$ , we have  $x^{\lambda} x_k / x_l \in I$ .

It is enough to check these conditions for every  $\lambda \in \Lambda(I)$ .

#### Example

The  $\mathfrak{S}_3$ -stable ideal in  $\Bbbk[x_1, x_2, x_3]$ 

 $I = \langle x_1 x_2 x_3, \quad x_1^2 x_2, x_1 x_2^2, x_1^2 x_3, x_1 x_3^2, x_2^2 x_3, x_2 x_3^2, \quad x_1^4, x_2^4, x_3^4 \rangle$ 

is strongly shifted with  $\Lambda(I) = \{(1,1,1), (0,1,2), (0,0,4)\}.$ 



#### Example

The  $\mathfrak{S}_4$ -stable ideal  $I \subseteq \Bbbk[x_1, x_2, x_3, x_4]$  with

$$\Lambda(I) = \{(1, 1, 2, 2), (0, 2, 2, 2), (0, 1, 2, 3)\}$$

is shifted but not strongly shifted because  $(0, 1, 2, 3) \in P(I)$  but  $(1, 1, 1, 3) \notin P(I)$ .



For distinct monomials  $u = \sigma(x^{\lambda}), v = \tau(x^{\mu})$ , we set  $v \prec u$  if:

- $\deg(v) < \deg(u)$ , or
- $\deg(v) = \deg(u)$  and  $x^{\mu} >_{\text{lex}} x^{\lambda}$ , or

• 
$$\lambda = \mu$$
 and  $v <_{\text{lex}} u$ .

#### Theorem (BDGMNORS)

Shifted  $\mathfrak{S}_n$ -fixed monomial ideals have linear quotients with respect to the order  $\prec$ .

# Star configurations

- $L_1, \ldots, L_n$  linear forms in a polynomial ring
- Assume all subsets  $\{L_{i_1},\ldots,L_{i_c}\}$  are linearly independent

Definition (Star configuration of codimension c)

$$I_{n,c} := \bigcap_{1 \leq i_1 < \dots < i_c \leq n} \langle L_{i_1}, \dots, L_{i_c} \rangle$$



Definition (Symbolic powers of  $I_{n,c}$ )

$$I_{n,c}^{(m)} = \bigcap_{1 \leq i_1 < \dots < i_c \leq n} \langle L_{i_1}, \dots, L_{i_c} \rangle^m.$$

Theorem (Geramita, Harbourne, Migliore, Nagel, 2017)

If  $L_i$  is replaced by a variable  $x_i$ , then the Betti numbers of  $I_{n,c}^{(m)}$  stay the same.

Frow now on

$$I_{n,c}^{(m)} = \bigcap_{1 \leq i_1 < \dots < i_c \leq n} \langle x_{i_1}, \dots, x_{i_c} \rangle^m \subseteq \Bbbk[x_1, \dots, x_n].$$

Theorem (proved by many)

$$\beta_{i,i+n-c+1}(I_{n,c}) = \binom{n}{c-1-i}\binom{n-c+i}{i}$$

Theorem (Geramita, Harbourne, Migliore, 2013) If  $c \ge 2$ , then

$$\beta_{i,i+j}(I_{n,c}^{(2)}) = \begin{cases} \binom{n}{c-2-i}\binom{n-c+1+i}{i}, & j=n-c+2\\ \binom{n}{c-1}\binom{c-1}{i}, & j=2(n-c+1) \end{cases}$$

## Proposition (BDGMNORS)

For every  $m \ge 1$ ,  $I_{n,c}^{(m)}$  is  $\mathfrak{S}_n$ -fixed and strongly shifted, with

$$P(I_{n,c}^{(m)}) = \left\{ \lambda : \sum_{i=1}^{c} \lambda_i \ge m \right\},$$
$$\Lambda(I_{n,c}^{(m)}) = \left\{ \lambda : \sum_{i=1}^{c} \lambda_i = m, \forall i > c \ \lambda_i = \lambda_c \right\}.$$

It follows that the ideals  $I_{n,c}^{(m)}$  have linear quotients.

### Corollary (BDGMNORS)

• For every  $i \ge 0$ ,

$$\beta_{i,i+m(n-c+1)}(I_{n,c}^{(m)}) = \binom{n}{c-1}\binom{c-1}{i}.$$

- **2** The Castelnuovo-Mumford regularity of  $I_{n,c}^{(m)}$  is m(n-c+1).
- **3** If  $m \ge 2$ , then all nonzero rows in the Betti table of  $I_{n,c}^{(m)}$  have length c 1, with the exception of the top one.
- If  $m \leq c$ , then for every  $i \geq 0$ ,

$$\beta_{i,i+n-c+m}(I_{n,c}^{(m)}) = \binom{n}{c-m-i}\binom{n-c+m+i-1}{i}$$

Corollary (BDGMNORS) If  $c \ge 3$ , then  $\beta_{i,i+j}(I_{n,c}^{(3)}) =$   $\begin{cases} \binom{n}{c-3-i}\binom{n-c+2+i}{i}, & j = n-c+3\\ \binom{n}{c-2}\binom{(c-2)}{i} + (n-c+1)\binom{c-1}{i}, & j = 2(n-c+1)+1\\ \binom{n}{c-1}\binom{c-1}{i}, & j = 3(n-c+1) \end{cases}$ 

# Equivariant resolutions of shifted ideals

• 
$$p(\lambda) := |\{k : \lambda_k < \lambda_n - 1\}|, r(\lambda) := |\{k : \lambda_k = \lambda_n\}|$$

• if 
$$|\lambda| = p$$
,  $S^{\lambda}$  is the simple  $\mathfrak{S}_p$ -module indexed by  $\lambda$ 

• if 
$$|\lambda| = p \leqslant t$$
,  $U_t^{\lambda} := (S^{\lambda} \otimes_{\Bbbk} S^{(t-p)}) \uparrow_{p,t-p}^t$ 

 $\bullet$  if  $|\lambda|=p,~M^{\lambda}$  is the permutation representation indexed by  $\lambda$ 

• 
$$\lambda_{\leq p} := (\lambda_1, \dots, \lambda_p)$$
  
•  $N_{k,l}^{\lambda} := \left( \left( M^{\lambda_{\leq p(\lambda)}} \otimes_{\mathfrak{S}_{p(\lambda)}} U_{p(\lambda)}^{(1^k)} \right) \otimes_{\mathbb{K}} U_{n-p(\lambda)}^{(1^l,r(\lambda))} \right) \Big|_{p(\lambda),n-p(\lambda)}^n$ 

### Theorem (BDGMNORS)

If I is a shifted ideal, then

$$\operatorname{Tor}_{i}(I, \mathbb{k})_{i+j} \cong \bigoplus_{\lambda \in \Lambda(I), |\lambda|=j} \bigoplus_{k+l=i} N_{k,l}^{\lambda}.$$

# Equivariant resolution of symbolic square

#### Theorem

If  $c \ge 2$ , then  $\operatorname{Tor}_i(I_{n,c}^{(2)}, \Bbbk)_{i+j} =$ 

$$\begin{cases} \left(S^{(1^i,n-c+2)} \otimes S^{(c-2-i)}\right)^{n}, & j=n-c+2\\ \left(\left(S^{(1^i)} \otimes S^{(c-1-i)}\right)^{c-1} \otimes S^{(n-c+1)}\right)^{n}, & j=2(n-c+1) \end{cases}$$

Example (n = 6, c = 4)