Symmetric shifted ideals

Federico Galetto

Combinatorial Algebra meets Algebraic Combinatorics Dalhousie University January 25, 2020

Project history

- Started at CMO in May 2017
- Joint with:
- Jennifer Biermann (Hobart and William Smith Colleges)
- Hernán de Alba (Universidad Autónoma de Zacatecas)
- Satoshi Murai (Waseda University)
- Uwe Nagel (University of Kentucky)
- Augustine O'Keefe (Connecticut College)
- Tim Römer (Universität Osnabrück)
- Alexandra Seceleanu (University of Nebraska, Lincoln)
- Available as arXiv:1907. 04288
- To appear in Journal of Algebra

Betti numbers and free resolutions

Definition

Let $I \subseteq R=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a homogeneous ideal. The numbers

$$
\beta_{i, j}(I)=\operatorname{dim}_{\mathbb{k}} \operatorname{Tor}_{i}(I, \mathbb{k})_{j}
$$

are called the Betti numbers of I.
Observations:

- If F_{\bullet} is a minimal free resolution of I, then $\beta_{i, j}(I)$ is the rank of F_{i} in degree j.
- A description of F_{\bullet} is also desirable.
- Both $\beta_{i, j}(I)$ and F_{\bullet} are (in general) hard to find.

Monomial ideals stable under permutations

Assumptions:

- \mathfrak{S}_{n} acts on $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ permuting variables
- $I \subseteq \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal such that $\mathfrak{S}_{n} \cdot I \subseteq I$

Lemma

The minimal monomial generating set $G(I)$ of I splits into \mathfrak{S}_{n}-orbits $\left\{\sigma\left(x^{\lambda}\right): \sigma \in \mathfrak{S}_{n}\right\}$ for some partitions $\lambda \in \mathbb{N}^{n}$.

Definition

$$
P(I):=\left\{\lambda: x^{\lambda} \in I\right\}, \quad \Lambda(I):=\left\{\lambda: x^{\lambda} \in G(I)\right\} .
$$

Convention: $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ satisfies $\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{n}$.

Shifted ideals

Let $I \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be an \mathfrak{S}_{n}-fixed monomial ideal.

Definition (Shifted ideal)

We say I is shifted if, for every $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in P(I)$ and $1 \leqslant k<n$ with $\lambda_{k}<\lambda_{n}$, we have $x^{\lambda} x_{k} / x_{n} \in I$.

Definition (Strongly shifted ideal)

We say I is strongly shifted if, for every $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in P(I)$ and $1 \leqslant k<l \leqslant n$ with $\lambda_{k}<\lambda_{l}$, we have $x^{\lambda} x_{k} / x_{l} \in I$.

It is enough to check these conditions for every $\lambda \in \Lambda(I)$.

Examples of shifted ideals

Example

The \mathfrak{S}_{3}-stable ideal in $\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$

$$
I=\left\langle x_{1} x_{2} x_{3}, \quad x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{1}^{2} x_{3}, x_{1} x_{3}^{2}, x_{2}^{2} x_{3}, x_{2} x_{3}^{2}, \quad x_{1}^{4}, x_{2}^{4}, x_{3}^{4}\right\rangle
$$

is strongly shifted with $\Lambda(I)=\{(1,1,1),(0,1,2),(0,0,4)\}$.

$x_{1}^{0} x_{2}^{1} x_{3}^{2}$

Examples of shifted ideals

Example

The \mathfrak{S}_{4}-stable ideal $I \subseteq \mathbb{k}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ with

$$
\Lambda(I)=\{(1,1,2,2),(0,2,2,2),(0,1,2,3)\}
$$

is shifted but not strongly shifted because $(0,1,2,3) \in P(I)$ but $(1,1,1,3) \notin P(I)$.

$x_{1}^{1} x_{2}^{1} x_{3}^{2} x_{4}^{2}$
$x_{1}^{0} x_{2}^{2} x_{3}^{2} x_{4}^{2}$
$x_{1}^{0} x_{2}^{1} x_{3}^{2} x_{4}^{3}$

Shifted ideals have linear quotients

For distinct monomials $u=\sigma\left(x^{\lambda}\right), v=\tau\left(x^{\mu}\right)$, we set $v \prec u$ if:

- $\operatorname{deg}(v)<\operatorname{deg}(u)$, or
- $\operatorname{deg}(v)=\operatorname{deg}(u)$ and $x^{\mu}>_{\text {lex }} x^{\lambda}$, or
- $\lambda=\mu$ and $v<_{\text {lex }} u$.

Theorem (BDGMNORS)

Shifted \mathfrak{S}_{n}-fixed monomial ideals have linear quotients with respect to the order \prec.

Star configurations

- L_{1}, \ldots, L_{n} linear forms in a polynomial ring
- Assume all subsets $\left\{L_{i_{1}}, \ldots, L_{i_{c}}\right\}$ are linearly independent

Definition (Star configuration of codimension c)

$$
I_{n, c}:=\bigcap_{1 \leqslant i_{1}<\cdots<i_{c} \leqslant n}\left\langle L_{i_{1}}, \ldots, L_{i_{c}}\right\rangle
$$

Symbolic powers and reduction to monomials

Definition (Symbolic powers of $I_{n, c}$)

$$
I_{n, c}^{(m)}=\bigcap_{1 \leqslant i_{1}<\cdots<i_{c} \leqslant n}\left\langle L_{i_{1}}, \ldots, L_{i_{c}}\right\rangle^{m}
$$

Theorem (Geramita, Harbourne, Migliore, Nagel, 2017)
If L_{i} is replaced by a variable x_{i}, then the Betti numbers of $I_{n, c}^{(m)}$ stay the same.

Frow now on

$$
I_{n, c}^{(m)}=\bigcap_{1 \leqslant i_{1}<\cdots<i_{c} \leqslant n}\left\langle x_{i_{1}}, \ldots, x_{i_{c}}\right\rangle^{m} \subseteq \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]
$$

Previously known Betti numbers

Theorem (proved by many)

$$
\beta_{i, i+n-c+1}\left(I_{n, c}\right)=\binom{n}{c-1-i}\binom{n-c+i}{i}
$$

Theorem (Geramita, Harbourne, Migliore, 2013)
If $c \geqslant 2$, then

$$
\beta_{i, i+j}\left(I_{n, c}^{(2)}\right)= \begin{cases}\binom{n}{c-2-i}\binom{n-c+1+i}{i}, & j=n-c+2 \\ \binom{n}{c-1}\binom{c-1}{i}, & j=2(n-c+1)\end{cases}
$$

Star configurations are strongly shifted

Proposition (BDGMNORS)

For every $m \geqslant 1, I_{n, c}^{(m)}$ is \mathfrak{S}_{n}-fixed and strongly shifted, with

$$
\begin{aligned}
& P\left(I_{n, c}^{(m)}\right)=\left\{\lambda: \sum_{i=1}^{c} \lambda_{i} \geqslant m\right\}, \\
& \Lambda\left(I_{n, c}^{(m)}\right)=\left\{\lambda: \sum_{i=1}^{c} \lambda_{i}=m, \forall i>c \lambda_{i}=\lambda_{c}\right\} .
\end{aligned}
$$

It follows that the ideals $I_{n, c}^{(m)}$ have linear quotients.

Betti tables of star configurations

Corollary (BDGMNORS)

(1) For every $i \geqslant 0$,

$$
\beta_{i, i+m(n-c+1)}\left(I_{n, c}^{(m)}\right)=\binom{n}{c-1}\binom{c-1}{i} .
$$

(2) The Castelnuovo-Mumford regularity of $I_{n, c}^{(m)}$ is $m(n-c+1)$.
(3) If $m \geqslant 2$, then all nonzero rows in the Betti table of $I_{n, c}^{(m)}$ have length $c-1$, with the exception of the top one.
(9) If $m \leqslant c$, then for every $i \geqslant 0$,

$$
\beta_{i, i+n-c+m}\left(I_{n, c}^{(m)}\right)=\binom{n}{c-m-i}\binom{n-c+m+i-1}{i} .
$$

Betti numbers of symbolic cube

Corollary (BDGMNORS)

If $c \geqslant 3$, then $\beta_{i, i+j}\left(I_{n, c}^{(3)}\right)=$

$$
\begin{cases}\binom{n}{c-3-i}\binom{n-c+2+i}{i}, & j=n-c+3 \\ \binom{n}{c-2}\left(\binom{c-2}{i}+(n-c+1)\binom{c-1}{i}\right), & j=2(n-c+1)+1 \\ \binom{n}{c-1}\binom{c-1}{i}, & j=3(n-c+1)\end{cases}
$$

Equivariant resolutions of shifted ideals

- $p(\lambda):=\left|\left\{k: \lambda_{k}<\lambda_{n}-1\right\}\right|, r(\lambda):=\left|\left\{k: \lambda_{k}=\lambda_{n}\right\}\right|$
- if $|\lambda|=p, S^{\lambda}$ is the simple \mathfrak{S}_{p}-module indexed by λ
- if $|\lambda|=p \leqslant t, U_{t}^{\lambda}:=\left(S^{\lambda} \otimes_{\mathbb{k}} S^{(t-p)}\right) \uparrow_{p, t-p}^{t}$
- if $|\lambda|=p, M^{\lambda}$ is the permutation representation indexed by λ
- $\lambda_{\leqslant p}:=\left(\lambda_{1}, \ldots, \lambda_{p}\right)$
- $N_{k, l}^{\lambda}:=\left(\left(M^{\lambda_{\leqslant p(\lambda)}} \otimes_{\mathfrak{G}_{p(\lambda)}} U_{p(\lambda)}^{\left(1^{k}\right)}\right) \otimes_{\mathbb{k}} U_{n-p(\lambda)}^{\left(1^{l}, r(\lambda)\right)}\right) \uparrow_{p(\lambda), n-p(\lambda)}^{n}$

Theorem (BDGMNORS)

If I is a shifted ideal, then

$$
\operatorname{Tor}_{i}(I, \mathbb{k})_{i+j} \cong \bigoplus_{\lambda \in \Lambda(I),|\lambda|=j} \bigoplus_{k+l=i} N_{k, l}^{\lambda}
$$

Equivariant resolution of symbolic square

Theorem

If $c \geqslant 2$, then $\operatorname{Tor}_{i}\left(I_{n, c}^{(2)}, \mathbb{k}\right)_{i+j}=$

$$
\begin{cases}\left(S^{\left(1^{i}, n-c+2\right)} \otimes S^{(c-2-i)}\right) \uparrow^{n}, & j=n-c+2 \\ \left(\left(S^{\left(1^{i}\right)} \otimes S^{(c-1-i)}\right) \uparrow^{c-1} \otimes S^{(n-c+1)}\right) \uparrow^{n}, & j=2(n-c+1)\end{cases}
$$

Example ($n=6, c=4$)

	0	1	2	3
4	$(4) \uparrow^{6}$	$(4,1) \uparrow^{6}$	$\left(4,1^{2}\right)$	-
5	-	-	-	-
6	$(0) \uparrow^{3} \uparrow^{6}$	$(1) \uparrow^{3} \uparrow^{6}$	$(2) \uparrow^{3} \uparrow^{6}$	$(3) \uparrow^{6}$

