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1 Irreducible Decomposition

A monomial ideal I is an ideal of k[x1, . . . , xn] generated by monomials.

Example. I = (xy3z, xy2z2, y3z2, y2z3)

A monomial ideal is irreducible if it is generated by powers of some variables.
An irreducible decomposition of a monomial ideal I is an expression I =
I1 ∩ . . . ∩ Ir with the Ij irreducible.

Example. I = (y2) ∩ (x, y3, z3) ∩ (y3, z2) ∩ (x, z2) ∩ (z)

If Ii ⊇ Ij , then Ii is redundant and can be dropped. When all the redundant
components have been dropped, the irreducible decomposition is said to be
irredundant.
You are probably familiar with the concept of primary decomposition of
an ideal. Every irreducible monomial ideal is primary, so an irreducible
decomposition is a primary decomposition. Depending on your applications,
an irreducible decomposition might be better because:

• it is finer, since we are not lumping together irreducible ideals with
the same radical;

• irredundant irreducible decompositions are unique (whereas primary
decomposition need not be unique in general);

• algorithms for primary decomposition are resource and time consum-
ing but specialized algorithms for irreducible decomposition of mono-
mial ideals are available.
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Some examples of applications of irreducible decomposition of monomial
ideals are the Frobenius problem, the integer programming gap, the reverse
engineering of biochemical networks, tropic convex hulls, tropical cyclic poly-
topes, secants of monomial ideals, differential powers of monomial ideals and
joins of monomial ideal (for detailed references see [5]).

2 The Splitting Algorithm

This algorithm is described in [2].

Lemma. If m is a minimal generator of a monomial ideal I and m = m1m2,
then

I = (I + (m1)) ∩ (I + (m2)).

The splitting algorithm uses the lemma repeatedly to split a minimal gen-
erator into powers of different variables.

Example.

I = (xy3z, xy2z2, y3z2, y2z3) =

= (xy3z, xy2z2, y3z2, y2) ∩ (xy3z, xy2z2, y3z2, z3) =

= (y2) ∩ (xy3z, xy2z2, y3, z3) ∩ (xy3z, xy2z2, z2, z3) =

= (y2) ∩ (xy2z2, y3, z3) ∩ (xy3z, z2) =

= (y2) ∩ (xy2, y3, z3) ∩ (z2, y3, z3) ∩ (xy3, z2) ∩ (z, z2) =

= (y2) ∩ (xy2, y3, z3) ∩ (y3, z2) ∩ (xy3, z2) ∩ (z) =

= (y2) ∩ (x, y3, z3) ∩ (y2, z3) ∩ (y3, z2) ∩ (x, z2) ∩ (y3, z2) ∩ (z) =

= (y2) ∩ (x, y3, z3) ∩ (y3, z2) ∩ (x, z2) ∩ (z)

After each split we reduce to a minimal set of generators. Notice how
(y2, z3) ⊇ (y2) so it is redundant; also, (y3, z2) appears twice so we can
drop a copy.

The main drawback of this algorithm is that it does not output an irredun-
dant decomposition. To get an irredundant decomposition we can eliminate
the redundant components at the end or after each split. Either way, elim-
inating redundant components is time consuming and since the number of
redundant components can be large, this algorithm is not vey efficient.
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3 The Alexander Dual Algorithm

This algorithm is due to E. Miller and is described in [3]. Let b = (b1, . . . , bn) ∈
Nn and xb = xb11 . . . xbnn ; we call b an exponent vector. Similarly, we write
mb for the irreducible monomial ideal (xb11 , . . . , x

bn
n ). If a and b are two

exponent vectors and a is component wise bigger than b, then we define the
exponent vector a \ b by setting

(a \ b)i :=

{
0, bi = 0

ai + 1− bi, bi 6= 0

For an arbitrary monomial ideal I, take aI to be the exponent vector on
the least common multiple of the minimal generators of I; then define the
Alexander dual of I to be the ideal

I∨ := (xaI\b | mb is an irreducible component of I).

Notice how the Alexander dual takes the irreducible components of I to a set
of minimal generators of I∨. This doesn’t seem helpful since we don’t know
the irreducible components yet but it turns out that the Alexander dual
also operates the other way around taking minimal generators to irreducible
components.

Theorem.

I∨ =
⋂
{maI\b | xb is minimal generator of I}.

Example. I = (xy3z, xy2z2, y3z2, y2z3), aI = (1, 3, 3)

I∨ = (x, y, z3) ∩ (x, y2, z2) ∩ (y, z2) ∩ (y2, z) =

= (x, xy2, xz2, xy, y2, yz2, xz3, y2z3, z3) ∩ (y2, yz, y2z2, z2) =

= (x, y2, yz2, z3) ∩ (y2, yz, z2) =

= (xy2, xyz, xz2, y2, y2z, y2z2, y2z2, yz2, yz2, y2z3, yz3, z3) =

= (xyz, xz2, y2, yz2, z3)

Then I = (x, y3, z3) ∩ (x, z2) ∩ (y2) ∩ (y3, z2) ∩ (z).

Why the algorithm works may be a little mysterious. The algorithm was
inspired by an equivalent for square free monomial ideals.
A square free monomial ideal is a monomial ideal generated by square free
monomials. Every square free monomial ideal in k[x1, . . . , xn] arises as the
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Stanley-Reisner ideal of a unique simplicial complex ∆ on {1, . . . , n}; we
denote this ideal I∆. The generators of I∆ are all the monomials whose
support is not in ∆. Equivalent formulations of the correspondence ∆ ! I∆

are given by the following bijections:

{minimal non faces of ∆}! {minimal generators of I∆}
{faces of ∆}! {monomials in k[x1, . . . , xn]/I∆}

Example.

∆ =

a
b

c d

e

I∆ = (ad, ae, be, ce, de, bcd)

The minimal generator ad of I∆ contains the variable d which is not in the
maximal face {a, b, c} of ∆; in other words, ad contains a variable which is
in the complement of {a, b, c}, i.e. in {d, e}. Therefore ad ∈ (d, e) which is
the irreducible ideal corresponding to the complement of the maximal face
{a, b, c} of ∆. Notice the same holds with ad and any maximal face of ∆.

In general, it follows that a minimal generator of I∆ belongs in the inter-
section of the irreducible ideals corresponding to the complement of the
maximal faces of ∆. The argument can be traced back and so we have the
correspondence:

{complement of maximal faces of ∆}! {irreducible components of I∆}

and I∨∆ = I∆∨ , where ∆∨ is the Alexander dual of the complex ∆ defined
by

∆∨ :=
{
{1, . . . , n} \ σ | σ /∈ ∆

}
.

Example. For I∆ = (ad, ae, be, ce, de, bcd), the maximal faces of ∆ are {e},
{b, d}, {c, d} and {a, b, c}. Hence

I = (a, b, c, d) ∩ (a, c, e) ∩ (a, b, e) ∩ (d, e).
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4 The Scarf Complex Algorithm

The Scarf complex was presented in [1] and is also discussed in [3]. Let
I = (m1, . . . ,mr) be a monomial ideal. For U ⊆ {1, . . . , r}, set mU =
lcm(mi, i ∈ U) (the monomial mU is called the label on U). The Scarf
complex of I is:

∆I :=
{
U ⊆ {1, . . . , r} | mU = mV ⇒ U = V

}
(i.e. ∆I consists of sets of minimal generators of I with unique labels).

Lemma. The Scarf complex ∆I is a simplicial complex of dimension at
most n− 1.

Example. J = (x2y5z︸ ︷︷ ︸
a

, xy3z3︸ ︷︷ ︸
b

, y4z2︸︷︷︸
c

, y2z4︸︷︷︸
d

) + ( x3︸︷︷︸
e

, y6︸︷︷︸
f

, z5︸︷︷︸
g

)

The vertices of the Scar complex ∆J are labeled by the generators of J . In
the picture, we write ijk for the label xiyjzk. We omit label for the edges
since we are not going to need them later. For example, we have an edge
labeled y4z4 between 042 and 024 because lcm(y4z2, y2z4) = y4z4. Similarly
we do not have an edge between 251 and 133 because lcm(x2y5z, xy3z3) =
x2y5z3 = lcm(x2y5z, xy3z3, y4z2) and for the same reason there is no face
with vertices 251, 133 and 042.

300
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251 133
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361
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352

343

144

334

325

The Scarf complex ∆J
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Here is the list of labels of the facets of ∆J :

x3y6z = lcm(a, e, f)

x2y6z2 = lcm(a, c, f)

x3y5z2 = lcm(a, c, e)

x3y4z3 = lcm(b, c, e)

xy4z4 = lcm(b, c, d)

x3y3z4 = lcm(b, d, e)

x3y2z5 = lcm(d, e, g)

A monomial ideal I is called (strongly) generic if no two generators of I raise
the same variable to the same power. A monomial ideal is called artinian if
it contains a power of each variable.

Theorem. The Scarf complex of a generic artinian monomial ideal is a
triangulation of the (n− 1)-simplex.

Theorem. Any generic artinian monomial ideal I is the irredundant inter-
section of the ideals mb where xb is the label of a facet of the Scarf complex
∆I .

Example. J = (x2y5z, xy3z3, y4z2, y2z4) + (x3, y6, z5) is a generic artinian
monomial ideal. The irredundant irreducible decomposition can be read off
of the Scarf complex ∆J :

J = (x3, y6, z) ∩ (x2, y6, z2) ∩ (x3, y5, z2) ∩
∩ (x3, y4, z3) ∩ (x, y4, z4) ∩ (x3, y3, z4) ∩ (x3, y2, z5)

Remark. The Scarf complex of a generic artinian monomial ideal can also
be used to construct a minimal free resolution of the ideal. Constructing the
entire Scarf complex requires a lot of least common multiple computations
and therefore can be time and resource consuming. However, to read off the
irreducible decomposition one only needs to know the facets of the complex.
This information can be obtained efficiently by locating an initial facet and
listing the others using a tree diagram and the algorithm developed by R.
A. Milowski [4].

The Scarf complex method only works for generic Artinian monomial ideals.
However any monomial ideal can be deformed to a generic monomial ideal
by the following procedure. Fix an order on the variables: x1 > . . . > xn.
Then go through the variables in order and do the following:
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1. arrange the generators of the ideal in decreasing order with respect to
the degree of xi;

2. whenever two monomials are tied in a non zero degree for xi, break
ties multiplying by xi one of the tied monomials and all the monomials
that precede it in the previous arrangement.

Example. I = (xy3z, xy2z2, y3z2, y2z3)
Start from x:

a︷︸︸︷
xy3z =

b︷ ︸︸ ︷
xy2z2 >

c︷︸︸︷
y3z2 =

d︷︸︸︷
y2z3

x2y3z > xy2z2 > y3z2 = y2z3

Then y:

a︷ ︸︸ ︷
x2y3z =

c︷︸︸︷
y3z2 >

b︷ ︸︸ ︷
xy2z2 =

d︷︸︸︷
y2z3

x2y4z = y4z2 > xy3z2 > y2z3

x2y5z > y4z2 > xy3z2 > y2z3

Finally z:

d︷︸︸︷
y2z3 >

b︷ ︸︸ ︷
xy3z2 =

c︷︸︸︷
y4z2 >

a︷ ︸︸ ︷
x2y5z

y2z4 > xy3z3 > y4z2 > x2y5z

So we get the generic monomial ideal (x2y5z︸ ︷︷ ︸
a

, xy3z3︸ ︷︷ ︸
b

, y4z2︸︷︷︸
c

, y2z4︸︷︷︸
d

).

Next any generic monomial ideal can be turned into a generic Artinian
monomial ideal by adding high enough powers of the variables.

Example. The ideal (x2y5z, xy3z3, y4z2, y2z4) becomes generic Artinian af-
ter adding (x3, y6, z5).

Through the process above, any monomial ideal can be turned into a generic
Artinian monomial ideal. The Scarf complex can then be employed to ob-
tain an irreducible decomposition. This can in turn be used to recover a
decomposition for the original ideal. First the powers of the variables that
were added in can be discarded. Then we can use the following.
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Theorem. Deformation “preserves” irreducible components.

However deforming back may introduce redundancy.

Example.
I = (xy3z︸︷︷︸

a

, xy2z2︸ ︷︷ ︸
b

, y3z2︸︷︷︸
c

, y2z3︸︷︷︸
d

)

J = (x2y5z︸ ︷︷ ︸
a

, xy3z3︸ ︷︷ ︸
b

, y4z2︸︷︷︸
c

, y2z4︸︷︷︸
d

) + ( x3︸︷︷︸
e

, y6︸︷︷︸
f

, z5︸︷︷︸
g

)

component of J component of I

x3y6z = lcm(a, e, f) (x3, y6, z) (z)

x2y6z2 = lcm(a, c, f) (x2, y6, z2) (x, z2)

x3y5z2 = lcm(a, c, e) (x3, y5, z2) (y3, z2)

x3y4z3 = lcm(b, c, e) (x3, y4, z3) (y3, z2) (same as previous)

xy4z4 = lcm(b, c, d) (x, y4, z4) (x, y3, z3)

x3y3z4 = lcm(b, d, e) (x3, y3, z4) (y2, z3) (contains next one)

x3y2z5 = lcm(d, e, g) (x3, y2, z5) (y2)

In conclusion, the Scarf complex method can be used to find a (possibly
redundant) irreducible decomposition of a monomial ideal. Even so, the
additional overhead introduced by deformation makes this algorithm less
efficient if the ideal is not generic to begin with. If the ideal is generic, then
this algorithm could be faster than the Alexander dual algorithm but it is
still bound by the amount of memory available.

5 The Slice Algorithm

Finally we present the basic idea behind the slice algorithm by B. H. Roune
[5]. Denote R the polynomial ring k[x1, . . . , xn] and let I be a monomial
ideal in R. A monomial m ∈ R is called a maximal standard monomial of
I if m /∈ I and xim ∈ I for all i = 1, . . . , n. The set of maximal standard
monomials of I is denoted msm(I).

Example. For I = (x6, x5y2, x2y4, y6), msm(I) = {x5y, x4y3, xy5}.
Each monomial corresponds to a point with integer coordinates. The shaded
area corresponds to I. Multiplying by x and y pushes monomials to the right

8



y6

x2y4

x5y2

x6

xy5

x4y3

x5y

and up. It is clear then that maximal standard monomials of I correspond
to those points outside of I that are the closest to the inner corners of the
shaded area.

Remark. The socle of R/I is the k-vector subspace of R/I defined by
{m ∈ R/I | xim = 0}. The classes of the maximal standard monomials in
R/I form a basis for the socle of R/I.

The slice algorithm actually computes msm(I). This can be used to recover
the irredundant irreducible decomposition of I as we illustrate here. Choose
an integer t larger than the degree of any minimal generator of I and define
φ(xm) = (xmi+1

i | mi + 1 < t).

Proposition. The map φ is a bijection from msm(I + (xt1, . . . , x
t
n)) to the

irreducible components of I.

Example. I = (x6, x5y2, x2y4, y6), msm(I) = {x5y, x4y3, xy5}
Choose t > 7 then apply φ to get I = (x6, y2) ∩ (x5, y4) ∩ (x2, y6).

The slice algorithm computes msm(I) by splitting it into two subsets called
the inner and outer slice. Both slices depend on the choice of a single
monomial p called the pivot. The decomposition looks like this:

msm(I) = (msm(I) ∩ (p)) ∪ (msm(I) \ (p)) .

Example. I = (x6, x5y2, x2y4, y6), p = xy3

It is clear from the picture that we have

msm(I) ∩ (p) = {xy5, x4y3}
msm(I) \ (p) = {x5y}
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y6

x2y4

x5y2

x6

xy5

x4y3

x5y

xy3

The monomials from each slice are then regarded as maximal standard
monomials from new ideals. Each slice is further split into smaller slices
and the process repeats until the newly created slices are empty.

Remark. The basic version of the algorithm described here requires numer-
ous steps to produce an answer even for a simple example like the one given
above. The strength of the algorithm relies upon a number of optimizations
like:

• different pivot selection strategies;

• monomial lower bounds on slice contents (to predict that an outer slice
will be empty thus reducing to the computation of a single slice);

• simplification of slices;

• independence splits (if I = I1 + I2 is a monomial ideal in k[x, y] with
I1 generated by monomials in the variables x and I2 generated by
monomials in the variables y, then msm(I) = msm(I1) ·msm(I2));

• ad hoc strategies for dealing with monomials in two variables;

• and more.

Another advantage of this algorithm is that the inner and outer slices of a
split can be computed in parallel to take advantage of systems with multiple
processors.
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