Equivariant resolutions of De Concini-Procesi ideals

Federico Galetto

Joint Mathematics Meetings
San Antonio, TX
January 13, 2015
Theorem

Let $R = \mathbb{C}[x_1, \ldots, x_n]$, M be a finitely generated graded R-module and

$$F_\bullet: F_0 \xleftarrow{\partial_1} F_1 \xleftarrow{\partial_2} F_2 \xleftarrow{\ldots} F_{n-1} \xleftarrow{\partial_n} F_n \xleftarrow{0}$$

a graded minimal free resolution of M. Let G be a linearly reductive group acting on R and M

- \mathbb{C}-linearly,
- preserving degrees ($\deg(g \cdot m) = \deg(m)$),
- preserving products ($g \cdot (rm) = (g \cdot r)(g \cdot m)$).

Then G acts on each F_i and the action commutes with ∂_i.

The resolution F_\bullet is said to be G-equivariant.
Equivariant resolutions

Proposition

*If F_\bullet is an equivariant resolution with the action of a group G, each F_i can be written as $V_i \otimes_\mathbb{C} R$, where V_i is a finite dimensional graded representation of G."

To understand an equivariant resolution, we need to identify the isomorphism class of each V_i as a representation. This information can be used to:

- give a representation theoretic/combinatorial interpretation of Betti numbers;
- refine invariants (such as the Hilbert series);
- describe the differentials in a resolution.
De Concini-Procesi ideals

- $\mu = (\mu_1, \ldots, \mu_t)$ partition of n
- X_μ $n \times n$ unipotent matrix whose Jordan canonical form has blocks of size μ_1, \ldots, μ_t

Definition

The Springer fiber associated to μ is

$$F_\mu := \{ V_0 \subset V_1 \subset \ldots \subset V_n = \mathbb{C}^n \mid \dim_{\mathbb{C}}(V_i) = i, X_\mu(V_i) \subseteq V_i \}. $$

Theorem (De Concini-Procesi, 1981)

$$H^*(F_\mu) \cong R/I_{\tilde{\mu}}, \text{ where } \tilde{\mu} \text{ is the conjugate partition of } \mu. $$

$I_{\tilde{\mu}}$ is the De Concini-Procesi ideal associated with $\tilde{\mu}$.
\begin{itemize}
 \item $\mu = (\mu_1, \ldots, \mu_t)$ partition of n
 \item \mathcal{D} set of $n \times n$ diagonal matrices;
 \item \mathcal{N}_μ set of $n \times n$ nilpotent matrices whose Jordan canonical form has blocks of size μ_1, \ldots, μ_t
\end{itemize}

Theorem (Kraft, 1981)

\[\mathcal{D} \times_{\mathbb{A}^n \mathbb{C}} \mathcal{N}_\mu \cong \text{Spec}(R/I_\mu) \]

I_μ is the De Concini-Procesi ideal associated with μ.
Facts & questions about DCP ideals

Facts

- The action of the symmetric group \mathfrak{S}_n permuting the variables of $R = \mathbb{C}[x_1, \ldots, x_n]$ stabilizes I_μ.
- The representation theoretic structure of R/I_μ is well understood (Garsia-Procesi, 1992).
- De Concini-Procesi ideals have recently been used in computation of Hilbert series for certain artinian Gorenstein ideals (Geramita-Hoefel-Wehlau, 2014).

Questions

- Can we describe a minimal generating set of I_μ?
- What are the graded Betti numbers of I_μ?
- Can we describe an \mathfrak{S}_n-equivariant resolution of I_μ?
The case of hook partitions

Proposition (Biagioli-Faridi-Rosas 2007)

For $1 \leq d \leq n$ and $\mu = (n - d + 1, 1^{d-1})$,

- $I_\mu = (e_1, \ldots, e_{d-1}) + (x_{i_1} \ldots x_{i_d}) = E_{n,d} + I_{n,d}$, where the e_i are elementary symmetric polynomials;
- $\{e_1, \ldots, e_{d-1}\} \cup \{x_{i_1} \ldots x_{i_d}\}$ is a minimal generating set of I_μ;
- a minimal free resolution of $I_{n,d}$ gives one of I_μ via iterated mapping cones.

Facts

- $I_{n,d}$ is \mathfrak{S}_n-stable.
- Each e_i is \mathfrak{S}_n-invariant.
- An equivariant resolution of $I_{n,d}$ gives one of I_μ via iterated mapping cones.
Sample resolutions

$I_{n,d}$ has a linear \mathfrak{S}_n-equivariant minimal free resolution:

$$0 \leftarrow I_{n,d} \leftarrow F_0 \leftarrow F_1 \leftarrow \ldots \leftarrow F_{n-d} \leftarrow 0$$

so $F_i \cong U^{n,d}_i \otimes_{\mathbb{C}} R(-d-i)$.

Examples

- For $d = n$,
 $$0 \leftarrow I_{n,n} \leftarrow [n] \leftarrow 0$$

- For $d = 1$, F_\bullet is a Koszul complex, so
 $$U^{n,1}_i \cong \bigwedge^{i+1} \mathbb{C}^n \cong [n-i-1, 1^{i+1}] \oplus [n-i, 1^i].$$

- For $d = n-1$,
 $$0 \leftarrow I_{n,n-1} \leftarrow [n] \oplus [n-1, 1] \leftarrow [n-1, 1] \leftarrow 0$$
Main result

Theorem (G.)

$I_{n,d}$ has an \mathfrak{S}_n-equivariant minimal free resolution of the form

\[U_0^{n,d} \otimes R(-d) \leftarrow \ldots \leftarrow U_i^{n,d} \otimes R(-d - i) \leftarrow \ldots \]

where, for all $0 \leq i \leq n - d$,

\[U_i^{n,d} \cong \text{Ind}_{\mathfrak{S}_{d+i} \times \mathfrak{S}_{n-d-i}}^{\mathfrak{S}_n} ([d, 1^i] \otimes [n - d - i]) \]

Facts

- $U_i^{n,d}$ is multiplicity free.
- $\text{Res}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_n} (U_i^{n,d}) \cong U_i^{n-1,d} \oplus U_i^{n-1,d-1} \oplus U_{i-1}^{n-1,d}$.
Proposition (G.)

\[U_{i}^{n,d} \text{ has a basis consisting of standard Young tableaux on } (d, 1^i) \text{ with entries from } \{1, \ldots, n\}. \]

Example (n=5,d=2,i=2)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

\(U_{2}^{4,2} \)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

\(U_{2}^{4,1} \)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

\(U_{1}^{4,2} \)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Federico Galetto
Queen’s University
Equivariant resolutions of De Concini-Procesi ideals