Symmetric Complete Intersections

Federico Galetto
(joint with A.V. Geramita and D. Wehlau)

McMaster University

AMS Spring Southeastern Sectional Meeting
University of Georgia, Athens
March 6, 2016
Let $R = \mathbb{C}[x_1, \ldots, x_n]$ with the standard grading.

Definition

A homogeneous ideal $I \subseteq R$ generated by a regular sequence f_1, \ldots, f_c is called a *complete intersection ideal*.

Facts

Let $I = (f_1, \ldots, f_c) \subseteq R$ be a CI ideal. Let $d_i = \deg(f_i)$.

- R/I is resolved by a Koszul complex.
- The Betti numbers of R/I depend only on d_1, \ldots, d_c.
- The Hilbert series of R/I depends only on d_1, \ldots, d_c.
The symmetric group \mathfrak{S}_n acts on $R = \mathbb{C}[x_1, \ldots, x_n]$ by permuting the variables. This action

- is linear,
- preserves degrees,
- and is compatible with multiplication.

If $I \subseteq R$ is an \mathfrak{S}_n-stable ideal, then \mathfrak{S}_n acts on R/I and on its minimal free resolutions.

Question

What is the classification of \mathfrak{S}_n-stable CI ideals in terms of commutative algebra AND representation theory?
Examples of \mathfrak{S}_n-stable CI ideals

Example

$R = \mathbb{C}[x_1, x_2, x_3, x_4]$.

- $I = (e_1, e_2, e_3, e_4)$, where e_i denotes the i-th elementary symmetric polynomial
- $I = (e_1, e_2, e_3, v)$, where

\[
v = \prod_{1 \leq i < j \leq 4} (x_i - x_j)
\]

is the Vandermonde determinant

- $I = (x_1^d, x_2^d, x_3^d, x_4^d)$, for $d \geq 1$
- $I = ((x_1 - x_3)(x_2 - x_4), (x_1 - x_2)(x_3 - x_4))$
Representations of the symmetric group

Let us review the basics of the representation theory of \mathfrak{S}_n over \mathbb{C}.

Facts

- Every finite dimensional representation of \mathfrak{S}_n is a direct sum of irreducible representations (with multiplicity).
- The irreducible representations S^λ of \mathfrak{S}_n are in bijection with partitions λ of n.
- The standard Young tableaux of shape λ form a basis of S^λ.
- If T is a standard Young tableau and i, j are entries in the same column of T, then the transposition $(i \ j)$ acts on T by $(i \ j)T = -T$.
Lemma

Let \(\varphi: S^\lambda \rightarrow R_d \) be a non-zero map of \(\mathfrak{S}_n \)-representations. If \(T \) is a standard tableau of shape \(\lambda \) containing 1 and 2 in the same column, then \(\varphi(T) \) is a polynomial divisible by \(x_1 - x_2 \).

Since two polynomials with a common factor do not form a regular sequence, the \(S^\lambda \) that generate a regular sequence must have \(\lambda \) equal to one of the following:

\[
\begin{array}{c|c|c|c|c}
\hline
\ & \ & \ & \ & \\
\hline
\ & \ & \ & \ & \\
\hline
\ & \ & \ & \ & \\
\hline
\ & \ & \ & \ & \\
\hline
\end{array}
\quad
\begin{array}{c|c|c|c|c}
\hline
\ & \ & \ & \ & \\
\hline
\ & \ & \ & \ & \\
\hline
\ & \ & \ & \ & \\
\hline
\ & \ & \ & \ & \\
\hline
\end{array}
\quad
\begin{array}{c|c|c|c|c}
\hline
\ & \ & \ & \ & \\
\hline
\ & \ & \ & \ & \\
\hline
\ & \ & \ & \ & \\
\hline
\ & \ & \ & \ & \\
\hline
\end{array}
\quad
\begin{array}{c|c|c|c|c}
\hline
\ & \ & \ & \ & \\
\hline
\ & \ & \ & \ & \\
\hline
\ & \ & \ & \ & \\
\hline
\ & \ & \ & \ & \\
\hline
\end{array}
\quad
\begin{array}{c|c|c|c|c}
\hline
\ & \ & \ & \ & \\
\hline
\ & \ & \ & \ & \\
\hline
\ & \ & \ & \ & \\
\hline
\ & \ & \ & \ & \\
\hline
\end{array}
\]
Theorem (Galetto-Geramita-Wehlau)

Suppose $I \subseteq R$ is an \mathfrak{S}_n-stable complete intersection ideal. Then $I/\mathfrak{m}I$ is isomorphic to one of the following:

1. a direct sum of up to n trivial representations $S^{(n)}$;
2. a direct sum of an alternating representations $S^{(1^m)}$ and up to $n - 1$ trivial representations;
3. a direct sum of a standard representation $S^{(n-1,1)}$ and up to one trivial representation;
4. for $n = 4$, a direct sum of the irreducible representation $S^{(2,2)}$ and up to two trivial representations.
Examples of \mathfrak{S}_n-stable CI ideals

Example

- $I = (e_1, e_2, e_3, e_4)$ is generated by symmetric polynomials.
- $I = (e_1, e_2, e_3, v)$ is generated by one alternating polynomial together with symmetric polynomials.
- $I = (x_1^d, x_2^d, x_3^d, x_4^d)$, for $d \geq 1$. We have:

$$\langle x_1^d, x_2^d, x_3^d, x_4^d \rangle \cong \langle p_d \rangle \oplus S^{(3,1)},$$

where $p_d = x_1^d + x_2^d + x_3^d + x_4^d$ is symmetric.

- $I = ((x_1 - x_3)(x_2 - x_4), (x_1 - x_2)(x_3 - x_4))$ has generators that span a copy of $S^{(2,2)}$.
Graded characters

If V is a representation of \mathfrak{S}_n, then the character of V is the function $\chi_V : \mathfrak{S}_n \to \mathbb{C}$ defined by $\chi_V(\sigma) = \text{trace}(\sigma : V \to V)$.

Definition

If $I \subset R$ is an \mathfrak{S}_n-stable ideal, the graded character of R/I is

$$\chi_{R/I}(\sigma, t) = \sum_{d \in \mathbb{Z}} \chi_{(R/I)_d}(\sigma) t^d.$$

Question

If $I \subset R$ is an \mathfrak{S}_n-stable CI ideal, then what is the graded character of R/I?

Note that $\chi_{R/I}(1_{\mathfrak{S}_n}, t) = H_{R/I}(t)$ (\(=\) Hilbert series of R/I).
Character formulas

We provide character formulas for each case of our classification.

Example

$I = (x_1^2, x_2^2, x_3^2, x_4^2) \subseteq R = \mathbb{C}[x_1, x_2, x_3, x_4]$

\[
\chi_{R/I} = \chi^{(4)} + (\chi^{(4)} + \chi^{(3,1)})t + (\chi^{(4)} + \chi^{(3,1)} + \chi^{(2,2)})t^2 \\
+ (\chi^{(4)} + \chi^{(3,1)})t^3 + \chi^{(4)}t^4,
\]

where χ^λ is the character of S^λ. Compare with

\[
H_{R/I} = 1 + 4t + 6t^2 + 4t^3 + t^4.
\]

Note also that the socle of R/I is a trivial representation.