Symbolic defect
The following is a list of articles that mention the symbolic defect of an ideal. This notion was defined in [1] below to measure the gap between regular and symbolic powers of ideals. You can download this list as a PDF or BibTeX file.
[1] F. Galetto, A.V. Geramita, Y.S. Shin, and A. Van Tuyl
The symbolic defect of an ideal
J. Pure Appl. Algebra, 223(6):2709--2731, 2019 - arXiv:1610.00176
[2] I. B. Jafarloo and G. Zito
On the containment problem for fat points
[3] H. Haghighi and M. Mosakhani
Containment problem for quasi star configurations of points in \(\mathbb P^2\)
Algebra Colloq., 25(4):661--670, 2018 - arXiv:1703.02827
[4] R. Fröberg, S. Lundqvist, A. Oneto, and B. Shapiro
Algebraic stories from one and from the other pockets
Arnold Math. J., 4(2):137--160, 2018 - arXiv:1801.01692
[5] M. Janssen, T. Kamp, and J. Vander Woude
Comparing powers of edge ideals
J. Algebra Appl., 18(10):19, 2019 - arXiv:1709.08701
[6] B. Drabkin and L. Guerrieri
Asymptotic invariants of ideals with Noetherian symbolic Rees algebra and applications to cover ideals
J. Pure Appl. Algebra, 224(1):300--319, 2020 - arXiv:1802.01884
[7] B. Chakraborty and M. Mandal
Invariants of the symbolic powers of edge ideals
J. Algebra Appl., 19(10):19, 2020 - arXiv:1904.07717
[8] B. Drabkin, E. Grifo, A. Seceleanu, and B. Stone
Calculations involving symbolic powers
J. Softw. Algebra Geom., 9(1):71--80, 2019 - arXiv:1712.01440
[9] K.-N. Lin and Y.-H. Shen
Symbolic powers and free resolutions of generalized star configurations of hypersurfaces
[10] E. Carlini, H. T. Hà, B. Harbourne, and A. Van Tuyl
Ideals of powers and powers of ideals. Intersecting algebra, geometry, and combinatorics.
Volume 27 of Lecture Notes of the Unione Matematica Italiana. Cham: Springer, 2020
[11] B. Drabkin and L. Guerrieri
On quasi-equigenerated and Freiman cover ideals of graphs
Commun. Algebra, 48(10):4413--4435, 2020 - arXiv:1909.07175
[12] I. B. Jafarloo and G. Malara
Regularity and symbolic defect of points on rational normal curves
[13] P. Mantero
The structure and free resolutions of the symbolic powers of star configurations of hypersurfaces
Trans. Am. Math. Soc., 373(12):8785--8835, 2020 - arXiv:1907.08172
[14] J. Biermann, H. de Alba, F. Galetto, S. Murai, U. Nagel, A. O'Keefe, T. Römer, and A. Seceleanu
Betti numbers of symmetric shifted ideals
J. Algebra, 560:312--342, 2020 - arXiv:1907.04288
[15] E. C. Moreno, C. Kohne, E.Sarmiento, and A. V. Tuyl
Powers of principal \(Q\)-borel ideals
[16] H. T. Hà and P. Mantero
The Alexander-Hirschowitz theorem and related problems
[17] K.-N. Lin and Y.-H. Shen
Symbolic powers of generalized star configurations of hypersurfaces
[18] B. Harbourne, J. Kettinger, and F. Zimmitti
Extreme values of the resurgence for homogeneous ideals in polynomial rings
J. Pure Appl. Algebra, 226(2):16, 2022. Id/No 106811 - arXiv:2005.05282
[19] A. V. Jayanthan, Arvind Kumar and Vivek Mukundan
On the resurgence and asymptotic resurgence of homogeneous ideals
[20] Paolo Mantero, Cleto B. Miranda-Neto, Uwe Nagel
A formula for symbolic powers
[21] M. Mandal and D. K. Pradhan
Symbolic defects of edge ideals of unicyclic graphs
J. Algebra Appl., 0(0):2350099, 0 - arXiv:2204.05489